I tried to use nnvm.frontend.from_onnx function to import my own pretrained model which consists of both cnn and rnn. But I got one error:
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
WARNING:root:Attribute momentum is disabled in nnvm.sym.batch_norm
WARNING:root:Attribute momentum is disabled in nnvm.sym.batch_norm
WARNING:root:Attribute momentum is disabled in nnvm.sym.batch_norm
Shape: Differently implemented in NNVM as a bypass (dummy operator)
KeyError Traceback (most recent call last)
in ()
1 onnx_model = onnx.load_model(‘crnn.onnx’)
2 # we can load the graph as NNVM compatible model
----> 3 sym, params = nnvm.frontend.from_onnx(onnx_model)
/home/lijun/tvm_git/tvm/nnvm/python/nnvm/frontend/onnx.pyc in from_onnx(model)
965 except AttributeError:
966 opset = 1
–> 967 sym, params = g.from_onnx(graph, opset)
968 return sym, params
/home/lijun/tvm_git/tvm/nnvm/python/nnvm/frontend/onnx.pyc in from_onnx(self, graph, opset)
820 shape=list(t_proto.dims))
821 else:
–> 822 op = self._convert_operator(op_name, inputs, attr, opset)
823 node_output = self._fix_outputs(op_name, node.output)
824 assert len(node_output) == len(op.list_output_names()), (
/home/lijun/tvm_git/tvm/nnvm/python/nnvm/frontend/onnx.pyc in _convert_operator(self, op_name, inputs, attrs, opset, identity_list, convert_map)
921 sym = get_nnvm_op(op_name)(*inputs, **attrs)
922 elif op_name in convert_map:
–> 923 sym = convert_map[op_name](inputs, attrs, self._params)
924 else:
925 raise NotImplementedError(
/home/lijun/tvm_git/tvm/nnvm/python/nnvm/frontend/onnx.pyc in _impl_v1(cls, inputs, attr, params)
623 “Either shape attribute or input should be set”)
624 if ‘input_as_shape’ in attr and attr[‘input_as_shape’]:
–> 625 shape = params[inputs[0].list_output_names()[0]].asnumpy()
626 else:
627 is_full = False
KeyError: ‘concatenate27_output’
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
And what’s more, I tried to follow the resnet18 toturial of vta steps to port the model used in the NNVM ONNX tutorial to PYNQ. I got errors too…
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
AttributeError Traceback (most recent call last)
in ()
9
10 # Build the graph runtime
—> 11 graph, lib, params = generate_graph(sym,params,device)
12 m = graph_runtime.create(graph, lib, ctx)
13
in generate_graph(sym, params, device)
40 # if target.device_name == “vta”:
41 assert env.BLOCK_IN == env.BLOCK_OUT
—> 42 sym = vta.graph.pack(sym, None, env.BATCH, env.BLOCK_OUT)
43 # with nnvm.compiler.build_config(opt_level=3):
44 # if target.device_name != “vta”:
/home/lijun/tvm_git/tvm/vta/python/vta/graph.pyc in pack(graph, shape_dict, bfactor, cfactor, start_name)
235 The transformed graph.
236 “”"
–> 237 graph = graph_attr.set_shape_inputs(graph, shape_dict)
238 graph = graph.apply(“InferShape”)
239 shape = graph.json_attr(“shape”)
/home/lijun/tvm_git/tvm/nnvm/python/nnvm/compiler/graph_attr.pyc in set_shape_inputs(g, shape)
22 “”"
23 list_shape = [
—> 24 shape.get(name, ()) for name in g.index.input_names]
25 g._set_json_attr(“shape_inputs”, list_shape, ‘list_shape’)
26 return g
AttributeError: ‘Symbol’ object has no attribute ‘index’
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
Is there anyone can help me? Thanx in advance for any answer I’ll get.