Tutorial, "How to optimize matmul with Auto TensorCore CodeGen", cannot work on my machine

My machine has a V100 with cuda 10.2. The tutorial cannot generate code using tensor core primitives but ordinary cuda code. Can anyone help to solve this situation? Thanks! Here is the code I try to run:

import logging
import sys

import numpy as np
import tvm
from tvm import te
import tvm.testing

from tvm import autotvm
from tvm.contrib import nvcc


def matmul_nn(A, B, L, dtype="float16", layout="NN"):
    k = te.reduce_axis((0, L), name="k")
    if dtype == "float16":
        out_type = "float"
    elif dtype == "int8":
        out_type = "int"
    elif dtype == "int4" or dtype == "int1":
        out_type = "int"
    if layout == "NN":
        return te.compute(
            (N, M), lambda i, j: te.sum(A[i, k].astype(out_type) * B[k, j].astype(out_type), axis=k)
        )
    if layout == "NT":
        return te.compute(
            (N, M), lambda i, j: te.sum(A[k, i].astype(out_type) * B[k, j].astype(out_type), axis=k)
        )
    if layout == "TN":
        return te.compute(
            (N, M), lambda i, j: te.sum(A[i, k].astype(out_type) * B[j, k].astype(out_type), axis=k)
        )
    if layout == "TT":
        return te.compute(
            (N, M), lambda i, j: te.sum(A[k, i].astype(out_type) * B[j, k].astype(out_type), axis=k)
        )

def test_gemm(N, L, M, dtype, layout):
    if layout == "NN":
        shape_a = (N, L)
        shape_b = (L, M)
    elif layout == "NT":
        shape_a = (L, N)
        shape_b = (L, M)
    elif layout == "TN":
        shape_a = (N, L)
        shape_b = (M, L)
    elif layout == "TT":
        shape_a = (L, N)
        shape_b = (M, L)
    else:
        print("Unsupported layout:", layout)
        sys.exit(1)
    A = te.placeholder(shape_a, name="A", dtype=dtype)
    B = te.placeholder(shape_b, name="B", dtype=dtype)
    C = matmul_nn(A, B, L, dtype, layout)

    s = te.create_schedule(C.op)
    y, x = s[C].op.axis
    k = s[C].op.reduce_axis[0]

    # storage_align params
    factor = 16
    offset = 8
    if dtype == "int8":
        factor = 32
        offset = 16
    elif dtype == "int4":
        factor = 64
        offset = 32
    elif dtype == "int1":
        factor = 256
        offset = 128

    # create cache stages
    AA = s.cache_read(A, "shared", [C])
    if layout == "NN" or layout == "TN":
        s[AA].storage_align(AA.op.axis[0], factor, offset)
    AL = s.cache_read(AA, "local", [C])
    BB = s.cache_read(B, "shared", [C])
    if layout == "TT" or layout == "NT":
        s[BB].storage_align(BB.op.axis[0], factor, offset)
    BL = s.cache_read(BB, "local", [C])
    CL = s.cache_write(C, "local")

    bx = 4
    by = 32
    step_k = 16
    v = 8

    # thread tile
    TX = 8
    TY = 1
    if dtype == "int4" or dtype == "int1":
        TX = 2
    # warp tile
    warp_tile_m = 16  # it could also be 8 or 32 on CUDA version >= 10.0
    warp_tile_k = 16  # it must be 16 for fp16/int8 data type
    if dtype == "int4":
        warp_tile_m = 8
        warp_tile_k = 32
    elif dtype == "int1":
        warp_tile_m = 8
        warp_tile_k = 128
    # block tile
    tile_x = bx * TX
    tile_y = by * TY

    yo, ty = s[C].split(y, tile_y)
    ty, yi = s[C].split(ty, TY)

    # schedule for C stage
    xo, xi = s[C].split(x, tile_x)
    WX = min(warp_tile_m, tile_x)
    tz, xi = s[C].split(xi, WX)
    tx, xi = s[C].split(xi, TX)
    s[C].reorder(yo, xo, tz, ty, tx, yi, xi)
    s[C].bind(yo, te.thread_axis("blockIdx.y"))
    s[C].bind(xo, te.thread_axis("blockIdx.x"))
    s[C].bind(ty, te.thread_axis("threadIdx.y"))
    s[C].bind(tz, te.thread_axis("threadIdx.z"))
    s[C].bind(tx, te.thread_axis("threadIdx.x"))

    # schedule for CL stage
    ko, ki = s[CL].split(k, step_k * warp_tile_k)
    kl, ki = s[CL].split(ki, warp_tile_k)
    s[CL].compute_at(s[C], tx)
    yo, xo = CL.op.axis
    s[CL].reorder(ko, kl, ki, yo, xo)

    # schedule for AA stage
    s[AA].compute_at(s[CL], ko)
    xo, xi = s[AA].split(s[AA].op.axis[1], factor=bx * v)
    tz, tx = s[AA].split(xi, factor=(WX // TX) * v)
    tx, vec = s[AA].split(tx, factor=v)
    fused = s[AA].fuse(s[AA].op.axis[0], xo)
    _, ty = s[AA].split(fused, factor=by)
    s[AA].bind(ty, te.thread_axis("threadIdx.y"))
    s[AA].bind(tz, te.thread_axis("threadIdx.z"))
    s[AA].bind(tx, te.thread_axis("threadIdx.x"))
    # vectorization is very important for float16/int8 inputs
    s[AA].vectorize(vec)

    # schedule for BB stage
    s[BB].compute_at(s[CL], ko)
    xo, xi = s[BB].split(s[BB].op.axis[1], factor=bx * v)
    tz, tx = s[BB].split(xi, factor=(WX // TX) * v)
    tx, vec = s[BB].split(tx, factor=v)
    fused = s[BB].fuse(s[BB].op.axis[0], xo)
    _, ty = s[BB].split(fused, factor=by)
    s[BB].bind(ty, te.thread_axis("threadIdx.y"))
    s[BB].bind(tz, te.thread_axis("threadIdx.z"))
    s[BB].bind(tx, te.thread_axis("threadIdx.x"))
    s[BB].vectorize(vec)

    s[AL].compute_at(s[CL], kl)
    s[BL].compute_at(s[CL], kl)

    # set the 'tensor_core' pragma for tensorcore codegen
    s[CL].pragma(ko, "tensor_core")

    return s, [A, B, C]


ctx = tvm.gpu()
if not nvcc.have_tensorcore(ctx.compute_version):
    raise Exception("the gpu has no tensorcore, skipping...")

M, N, L = 512, 32, 512
dtype = "float16"
layout = "NN"
if len(sys.argv) >= 4:
    M, N, L = int(sys.argv[1]), int(sys.argv[2]), int(sys.argv[3])
if len(sys.argv) >= 5:
    dtype = sys.argv[4]
if len(sys.argv) >= 6:
    layout = sys.argv[5]

# check whether current gpu arch support support current dtype's wmma codegen
cuda_compute_capability = tvm.runtime._ffi_api.GetDeviceAttr(2, 0, 4)
major, minor = nvcc.parse_compute_version(cuda_compute_capability)
if dtype == "int8":
    assert major == 7 and minor >= 2
elif dtype == "int4" or dtype == "int1":
    # int4/int1 only support layout TN
    assert major == 7 and minor == 5 and layout == "TN"


def evaluate(M, N, L, dtype, layout):
    with tvm.target.Target("cuda"):
        s, arg_bufs = test_gemm(N, L, M, dtype, layout)
        print(tvm.lower(s, arg_bufs, simple_mode=True))
        func = tvm.build(s, arg_bufs)
    dev_module = func.imported_modules[0]
    print(dev_module.get_source())

    # check correctness
    if layout == "NN":
        shape_a = (N, L)
        shape_b = (L, M)
    elif layout == "NT":
        shape_a = (L, N)
        shape_b = (L, M)
    elif layout == "TN":
        shape_a = (N, L)
        shape_b = (M, L)
    elif layout == "TT":
        shape_a = (L, N)
        shape_b = (M, L)

    a_np = None
    b_np = None
    c_np = None
    c_np_type = None
    if dtype == "float16":
        c_np_type = np.float32
        a_np = np.random.uniform(size=shape_a).astype(np.float16)
        b_np = np.random.uniform(size=shape_b).astype(np.float16)
        if layout == "NN":
            c_np = np.dot(a_np, b_np)
        elif layout == "NT":
            c_np = np.dot(a_np.T, b_np)
        elif layout == "TN":
            c_np = np.dot(a_np, b_np.T)
        elif layout == "TT":
            c_np = np.dot(a_np.T, b_np.T)
    elif dtype == "int8":
        c_np_type = np.int32
        a_np = np.random.randint(low=-128, high=127, size=shape_a).astype(np.int8)
        b_np = np.random.randint(low=-128, high=127, size=shape_b).astype(np.int8)
        if layout == "NN":
            c_np = np.dot(a_np.astype(np.int32), b_np.astype(np.int32))
        elif layout == "NT":
            c_np = np.dot(a_np.astype(np.int32).T, b_np.astype(np.int32))
        elif layout == "TN":
            c_np = np.dot(a_np.astype(np.int32), b_np.astype(np.int32).T)
        elif layout == "TT":
            c_np = np.dot(a_np.astype(np.int32).T, b_np.astype(np.int32).T)
    elif dtype == "int4":
        c_np_type = np.int32
        a_np_int = np.random.randint(low=-8, high=7, size=shape_a).astype(np.int32)
        b_np_int = np.random.randint(low=-8, high=7, size=shape_b).astype(np.int32)
        # "TN"
        c_np = np.dot(a_np_int.astype(np.int32), b_np_int.astype(np.int32).T)
        a_np = np.zeros(shape=(N, int(L / 8)), dtype=np.int32)
        b_np = np.zeros(shape=(M, int(L / 8)), dtype=np.int32)
        # a_np --> col_major
        for i in range(N):
            for j in range(int(L / 8)):
                for k in range(8):
                    a_np[i, j] = a_np[i, j] | ((a_np_int[i, j * 8 + k] & 0xF) << ((7 - k) * 4))

        # b_np --> row_major
        for i in range(M):
            for j in range(int(L / 8)):
                for k in range(8):
                    b_np[i, j] = b_np[i, j] | ((b_np_int[i, j * 8 + k] & 0xF) << ((7 - k) * 4))
    elif dtype == "int1":
        c_np_type = np.int32
        a_np_int = np.random.randint(low=0, high=1, size=shape_a).astype(np.int32)
        b_np_int = np.random.randint(low=0, high=1, size=shape_b).astype(np.int32)
        # "TN"
        c_np = np.dot(a_np_int.astype(np.int32), b_np_int.astype(np.int32).T)
        a_np = np.zeros(shape=(N, int(L / 32)), dtype=np.int32)
        b_np = np.zeros(shape=(M, int(L / 32)), dtype=np.int32)
        for i in range(N):
            for j in range(int(L / 32)):
                for k in range(32):
                    a_np[i, j] = a_np[i, j] | ((a_np_int[i, j * 32 + k] & 0xF) << (31 - k))

        for i in range(M):
            for j in range(int(L / 32)):
                for k in range(32):
                    b_np[i, j] = b_np[i, j] | ((b_np_int[i, j * 32 + k] & 0xF) << (31 - k))

    c_tvm = tvm.nd.array(np.zeros(c_np.shape, dtype=c_np_type), ctx=ctx)
    a_tvm = tvm.nd.array(a_np, ctx=ctx)
    b_tvm = tvm.nd.array(b_np, ctx=ctx)
    func(a_tvm, b_tvm, c_tvm)

    tvm.testing.assert_allclose(c_np, c_tvm.asnumpy(), rtol=1e-3)

    evaluator = func.time_evaluator(func.entry_name, ctx, number=100)
    print("Time cost of this operator: %f" % evaluator(a_tvm, b_tvm, c_tvm).mean)


evaluate(M, N, L, dtype, layout)

And the output is:

#[version = "0.0.5"]
primfn(A_1: handle, B_1: handle, compute_1: handle) -> ()
  attr = {"global_symbol": "main", "tir.noalias": True}
  buffers = {compute: Buffer(compute_2: Pointer(float32), float32, [32, 512], []),
            B: Buffer(B_2: Pointer(float16), float16, [512, 512], []),
            A: Buffer(A_2: Pointer(float16), float16, [32, 512], [])}
  buffer_map = {A_1: A, B_1: B, compute_1: compute} {
  attr [IterVar(blockIdx.y: int32, (nullptr), "ThreadIndex", "blockIdx.y")] "thread_extent" = 1;
  attr [compute.local: Pointer(float32)] "storage_scope" = "local";
  allocate(compute.local, float32, [8]);
  attr [A.shared: Pointer(float16)] "storage_scope" = "shared";
  allocate(A.shared, float16, [8448]);
  attr [B.shared: Pointer(float16)] "storage_scope" = "shared";
  allocate(B.shared, float16, [8192]);
  attr [A.shared.local: Pointer(float16)] "storage_scope" = "local";
  allocate(A.shared.local, float16, [16]);
  attr [B.shared.local: Pointer(float16)] "storage_scope" = "local";
  allocate(B.shared.local, float16, [128]);
  attr [IterVar(blockIdx.x: int32, (nullptr), "ThreadIndex", "blockIdx.x")] "thread_extent" = 16;
  attr [IterVar(threadIdx.z: int32, (nullptr), "ThreadIndex", "threadIdx.z")] "thread_extent" = 2;
  attr [IterVar(threadIdx.y: int32, (nullptr), "ThreadIndex", "threadIdx.y")] "thread_extent" = 32;
  attr [IterVar(threadIdx.x: int32, (nullptr), "ThreadIndex", "threadIdx.x")] "thread_extent" = 2 {
    for (j.c.init: int32, 0, 8) {
      compute.local[j.c.init] = 0f32
    }
    attr [IterVar(k.outer: int32, (nullptr), "CommReduce", "")] "pragma_tensor_core" = 1;
    for (k.outer, 0, 2) {
      for (ax0.ax1.outer.fused.outer: int32, 0, 8) {
        attr [IterVar(threadIdx.y_1: int32, (nullptr), "ThreadIndex", "threadIdx.y")] "thread_extent" = 32;
        attr [IterVar(threadIdx.z_1: int32, (nullptr), "ThreadIndex", "threadIdx.z")] "thread_extent" = 2;
        attr [IterVar(threadIdx.x_1: int32, (nullptr), "ThreadIndex", "threadIdx.x")] "thread_extent" = 2;
        A.shared[ramp((((((ax0.ax1.outer.fused.outer*1056) + (floordiv(threadIdx.y_1, 8)*264)) + (floormod(threadIdx.y_1, 8)*32)) + (threadIdx.z_1*16)) + (threadIdx.x_1*8)), 1, 8)] = (float16x8*)A_2[ramp(((((((ax0.ax1.outer.fused.outer*2048) + (floordiv(threadIdx.y_1, 8)*512)) + (k.outer*256)) + (floormod(threadIdx.y_1, 8)*32)) + (threadIdx.z_1*16)) + (threadIdx.x_1*8)), 1, 8)]
      }
      for (ax0.ax1.outer.fused.outer_1: int32, 0, 8) {
        attr [IterVar(threadIdx.y_2: int32, (nullptr), "ThreadIndex", "threadIdx.y")] "thread_extent" = 32;
        attr [IterVar(threadIdx.z_2: int32, (nullptr), "ThreadIndex", "threadIdx.z")] "thread_extent" = 2;
        attr [IterVar(threadIdx.x_2: int32, (nullptr), "ThreadIndex", "threadIdx.x")] "thread_extent" = 2;
        B.shared[ramp(((((ax0.ax1.outer.fused.outer_1*1024) + (threadIdx.y_2*32)) + (threadIdx.z_2*16)) + (threadIdx.x_2*8)), 1, 8)] = (float16x8*)B_2[ramp(((((((k.outer*131072) + (ax0.ax1.outer.fused.outer_1*16384)) + (threadIdx.y_2*512)) + (blockIdx.x*32)) + (threadIdx.z_2*16)) + (threadIdx.x_2*8)), 1, 8)]
      }
      for (k.inner.outer: int32, 0, 16) {
        for (ax1: int32, 0, 16) {
          A.shared.local[ax1] = (float16*)A.shared[(((threadIdx.y*264) + (k.inner.outer*16)) + ax1)]
        }
        for (ax0: int32, 0, 16) {
          for (ax1_1: int32, 0, 8) {
            B.shared.local[((ax0*8) + ax1_1)] = (float16*)B.shared[(((((k.inner.outer*512) + (ax0*32)) + (threadIdx.z*16)) + (threadIdx.x*8)) + ax1_1)]
          }
        }
        for (k.inner.inner: int32, 0, 16) {
          for (j.c: int32, 0, 8) {
            compute.local[j.c] = ((float32*)compute.local[j.c] + (cast(float32, (float16*)A.shared.local[k.inner.inner])*cast(float32, (float16*)B.shared.local[((k.inner.inner*8) + j.c)])))
          }
        }
      }
    }
    for (j.inner.inner.inner: int32, 0, 8) {
      compute_2[(((((threadIdx.y*512) + (blockIdx.x*32)) + (threadIdx.z*16)) + (threadIdx.x*8)) + j.inner.inner.inner)] = (float32*)compute.local[j.inner.inner.inner]
    }
  }
}

#[metadata]
{
  "root": 1, 
  "nodes": [
    {
      "type_key": ""
    }, 
    {
      "type_key": "Map", 
      "keys": [
        "IntImm"
      ], 
      "data": [2]
    }, 
    {
      "type_key": "Array", 
      "data": [3]
    }, 
    {
      "type_key": "IntImm", 
      "attrs": {
        "dtype": "bool", 
        "value": "1"
      }
    }
  ], 
  "b64ndarrays": [], 
  "attrs": {"tvm_version": "0.8.dev0"}
}
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 530)
#include <cuda_fp16.h>
__device__ half max(half a, half b)
{
  return __hgt(__half(a), __half(b)) ? a : b;
}
__device__ half min(half a, half b)
{
  return __hlt(__half(a), __half(b)) ? a : b;
}
#else

typedef unsigned short uint16_t;
typedef unsigned char uint8_t;
typedef signed char int8_t;
typedef int int32_t;
typedef unsigned long long uint64_t;
typedef unsigned int uint32_t;

#define TVM_FORCE_INLINE inline __attribute__((always_inline))
#define TVM_XINLINE TVM_FORCE_INLINE __device__ __host__
#define TVM_ALIGNED(x) __attribute__ ((aligned(x)))
#define TVM_HALF_OPERATOR(RTYPE, OP)                              \
  TVM_XINLINE RTYPE operator OP (half a, half b) {                \
    return RTYPE(float(a) OP float(b));                           \
  }                                                               \
  template<typename T>                                            \
  TVM_XINLINE RTYPE operator OP (half a, T b) {                   \
    return RTYPE(float(a) OP float(b));                           \
  }                                                               \
  template<typename T>                                            \
  TVM_XINLINE RTYPE operator OP (T a, half b) {                   \
    return RTYPE(float(a) OP float(b));                           \
  }

#define TVM_HALF_ASSIGNOP(AOP, OP)                                \
  template<typename T>                                            \
  TVM_XINLINE half operator AOP (const T& a) {                    \
    return *this = half(float(*this) OP float(a));                \
  }                                                               \
  template<typename T>                                            \
  TVM_XINLINE half operator AOP (const volatile T& a) volatile {  \
    return *this = half(float(*this) OP float(a));                \
  }

class TVM_ALIGNED(2) half {
public:
  uint16_t half_;

  static TVM_XINLINE half Binary(uint16_t value) {
    half res;
    res.half_ = value;
    return res;
  }

  TVM_XINLINE half() {}

  TVM_XINLINE half(const float& value) { constructor(value); }
  TVM_XINLINE explicit half(const double& value) { constructor(value); }
  TVM_XINLINE explicit half(const int8_t& value) { constructor(value); }
  TVM_XINLINE explicit half(const uint8_t& value) { constructor(value); }
  TVM_XINLINE explicit half(const int32_t& value) { constructor(value); }
  TVM_XINLINE explicit half(const uint32_t& value) { constructor(value); }
  TVM_XINLINE explicit half(const long long& value) { constructor(value); }
  TVM_XINLINE explicit half(const uint64_t& value) { constructor(value); }

  TVM_XINLINE operator float() const {                          \
    return float(half2float(half_));                            \
  }                                                             \
  TVM_XINLINE operator float() const volatile {                 \
    return float(half2float(half_));                            \
  }


  TVM_HALF_ASSIGNOP(+=, +)
  TVM_HALF_ASSIGNOP(-=, -)
  TVM_HALF_ASSIGNOP(*=, *)
  TVM_HALF_ASSIGNOP(/=, /)

  TVM_XINLINE half operator+() {
    return *this;
  }

  TVM_XINLINE half operator-() {
    return half(-float(*this));
  }

  TVM_XINLINE half operator=(const half& a) {
    half_ = a.half_;
    return a;
  }

  template<typename T>
  TVM_XINLINE half operator=(const T& a) {
    return *this = half(a);
  }

  TVM_XINLINE half operator=(const half& a) volatile {
    half_ = a.half_;
    return a;
  }

  template<typename T>
  TVM_XINLINE half operator=(const T& a) volatile {
    return *this = half(a);
  }

private:
  union Bits {
    float f;
    int32_t si;
    uint32_t ui;
  };

  static int const fp16FractionBits = 10;
  static int const fp32FractionBits = 23;
  static int32_t const fp32FractionMask = ~(~0u << fp32FractionBits);   // == 0x7fffff
  static int32_t const fp32HiddenBit = 1 << fp32FractionBits;   // == 0x800000
  static int const shift = fp32FractionBits - fp16FractionBits;   // == 13
  static int const shiftSign = 16;
  static int32_t const expAdjust = 127 - 15;   // exp32-127 = exp16-15, so exp16 = exp32 - (127-15)

  static int32_t const infN = 0x7F800000;   // flt32 infinity
  static int32_t const maxN = 0x477FFFFF;   // max flt32 that's a flt16 normal after >> by shift
  static int32_t const minN = 0x38800000;   // min flt16 normal as a flt32
  static int32_t const maxZ = 0x33000000;   // max fp32 number that's still rounded to zero in fp16
  static int32_t const signN = 0x80000000;  // flt32 sign bit

  static int32_t const infC = infN >> shift;
  static int32_t const nanN = (infC + 1) << shift;   // minimum flt16 nan as a flt32
  static int32_t const maxC = maxN >> shift;
  static int32_t const minC = minN >> shift;
  static int32_t const signC = signN >> shiftSign;  // flt16 sign bit

  static int32_t const mulN = 0x52000000;  // (1 << 23) / minN
  static int32_t const mulC = 0x33800000;  // minN / (1 << (23 - shift))

  static int32_t const subC = 0x003FF;  // max flt32 subnormal down shifted
  static int32_t const norC = 0x00400;  // min flt32 normal down shifted

  static int32_t const maxD = infC - maxC - 1;
  static int32_t const minD = minC - subC - 1;

  TVM_XINLINE uint16_t float2half(const float& value) const {
    Bits v;
    v.f = value;
    uint32_t sign = v.si & signN;    // grab sign bit
    v.si ^= sign;                    // clear sign bit from v
    sign >>= shiftSign;              // logical shift sign to fp16 position

    if (v.si <= maxZ) {
      // Handle eventual zeros here to ensure
      // vshift will not exceed 32 below.
      v.ui = 0;
    } else if (v.si < minN) {
      // Handle denorms
      uint32_t exp32 = v.ui >> fp32FractionBits;
      int32_t exp16 = exp32 - expAdjust;
      // If exp16 == 0 (just into the denorm range), then significant should be shifted right 1.
      // Smaller (so negative) exp16 values should result in greater right shifts.
      uint32_t vshift = 1 - exp16;
      uint32_t significand = fp32HiddenBit | (v.ui & fp32FractionMask);
      v.ui = significand >> vshift;
      v.ui += (v.ui & 0x3fff) != 0x1000 || (significand & 0x7ff) ? 0x1000 : 0;
    } else if (v.si <= maxN) {
      // Handle norms
      v.ui += (v.ui & 0x3fff) != 0x1000 ? 0x1000 : 0;
      v.ui -= expAdjust << fp32FractionBits;
    } else if (v.si <= infN) {
      v.si = infN;
    } else if (v.si < nanN) {
      v.si = nanN;
    }

    v.ui >>= shift;
    return sign | (v.ui & 0x7fff);
  }

  // Same as above routine, except for addition of volatile keyword
  TVM_XINLINE uint16_t float2half(
    const volatile float& value) const volatile {
    Bits v;
    v.f = value;
    uint32_t sign = v.si & signN;    // grab sign bit
    v.si ^= sign;                    // clear sign bit from v
    sign >>= shiftSign;              // logical shift sign to fp16 position

    if (v.si <= maxZ) {
      // Handle eventual zeros here to ensure
      // vshift will not exceed 32 below.
      v.ui = 0;
    } else if (v.si < minN) {
      // Handle denorms
      uint32_t exp32 = v.ui >> fp32FractionBits;
      int32_t exp16 = exp32 - expAdjust;
      // If exp16 == 0 (just into the denorm range), then significant should be shifted right 1.
      // Smaller (so negative) exp16 values should result in greater right shifts.
      uint32_t vshift = 1 - exp16;
      uint32_t significand = fp32HiddenBit | (v.ui & fp32FractionMask);
      v.ui = significand >> vshift;
      v.ui += (v.ui & 0x3fff) != 0x1000 || (significand & 0x7ff) ? 0x1000 : 0;
    } else if (v.si <= maxN) {
      // Handle norms
      v.ui += (v.ui & 0x3fff) != 0x1000 ? 0x1000 : 0;
      v.ui -= expAdjust << fp32FractionBits;
    } else if (v.si <= infN) {
      v.si = infN;
    } else if (v.si < nanN) {
      v.si = nanN;
    }

    v.ui >>= shift;
    return sign | (v.ui & 0x7fff);
  }

  TVM_XINLINE float half2float(const uint16_t& value) const {
    Bits v;
    v.ui = value;
    int32_t sign = v.si & signC;
    v.si ^= sign;
    sign <<= shiftSign;
    v.si ^= ((v.si + minD) ^ v.si) & -(v.si > subC);
    v.si ^= ((v.si + maxD) ^ v.si) & -(v.si > maxC);
    Bits s;
    s.si = mulC;
    s.f *= v.si;
    int32_t mask = -(norC > v.si);
    v.si <<= shift;
    v.si ^= (s.si ^ v.si) & mask;
    v.si |= sign;
    return v.f;
  }

  TVM_XINLINE float half2float(
    const volatile uint16_t& value) const volatile {
    Bits v;
    v.ui = value;
    int32_t sign = v.si & signC;
    v.si ^= sign;
    sign <<= shiftSign;
    v.si ^= ((v.si + minD) ^ v.si) & -(v.si > subC);
    v.si ^= ((v.si + maxD) ^ v.si) & -(v.si > maxC);
    Bits s;
    s.si = mulC;
    s.f *= v.si;
    int32_t mask = -(norC > v.si);
    v.si <<= shift;
    v.si ^= (s.si ^ v.si) & mask;
    v.si |= sign;
    return v.f;
  }

  template<typename T>
  TVM_XINLINE void constructor(const T& value) {
    half_ = float2half(float(value));
  }
};

TVM_HALF_OPERATOR(half, +)
TVM_HALF_OPERATOR(half, -)
TVM_HALF_OPERATOR(half, *)
TVM_HALF_OPERATOR(half, /)
TVM_HALF_OPERATOR(bool, >)
TVM_HALF_OPERATOR(bool, <)
TVM_HALF_OPERATOR(bool, >=)
TVM_HALF_OPERATOR(bool, <=)

TVM_XINLINE half __float2half_rn(const float a) {
  return half(a);
}
#endif


// Pack two half values.
static inline __device__ __host__ unsigned
__pack_half2(const half x, const half y) {
  unsigned v0 = *((unsigned short *)&x);
  unsigned v1 = *((unsigned short *)&y);
  return (v1 << 16) | v0;
}

// fix undefined fp16 match function
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 530)
static inline __device__ __host__ half hpow(half x, half y) {
  float tmp_x = __half2float(x);
  float tmp_y = __half2float(y);
  float result = powf(tmp_x, tmp_y);
  return __float2half(result);
}

static inline __device__ __host__ half htanh(half x) {
  float tmp_x = __half2float(x);
  float result = tanhf(tmp_x);
  return __float2half(result);
}
#endif
extern "C" __global__ void default_function_kernel0(half* __restrict__ A, half* __restrict__ B, float* __restrict__ compute) {
  float compute_local[8];
  __shared__ half A_shared[8448];
  __shared__ half B_shared[8192];
  half A_shared_local[16];
  half B_shared_local[128];
  for (int j_c_init = 0; j_c_init < 8; ++j_c_init) {
    compute_local[(j_c_init)] = 0.000000e+00f;
  }
  for (int k_outer = 0; k_outer < 2; ++k_outer) {
    __syncthreads();
    for (int ax0_ax1_outer_fused_outer = 0; ax0_ax1_outer_fused_outer < 8; ++ax0_ax1_outer_fused_outer) {
        ((uint4*)(A_shared + ((((((ax0_ax1_outer_fused_outer * 1056) + ((((int)threadIdx.y) >> 3) * 264)) + ((((int)threadIdx.y) & 7) * 32)) + (((int)threadIdx.z) * 16)) + (((int)threadIdx.x) * 8)))))[0] = ((uint4*)(A + (((((((ax0_ax1_outer_fused_outer * 2048) + ((((int)threadIdx.y) >> 3) * 512)) + (k_outer * 256)) + ((((int)threadIdx.y) & 7) * 32)) + (((int)threadIdx.z) * 16)) + (((int)threadIdx.x) * 8)))))[0];
    }
    for (int ax0_ax1_outer_fused_outer1 = 0; ax0_ax1_outer_fused_outer1 < 8; ++ax0_ax1_outer_fused_outer1) {
        ((uint4*)(B_shared + (((((ax0_ax1_outer_fused_outer1 * 1024) + (((int)threadIdx.y) * 32)) + (((int)threadIdx.z) * 16)) + (((int)threadIdx.x) * 8)))))[0] = ((uint4*)(B + (((((((k_outer * 131072) + (ax0_ax1_outer_fused_outer1 * 16384)) + (((int)threadIdx.y) * 512)) + (((int)blockIdx.x) * 32)) + (((int)threadIdx.z) * 16)) + (((int)threadIdx.x) * 8)))))[0];
    }
    __syncthreads();
    for (int k_inner_outer = 0; k_inner_outer < 16; ++k_inner_outer) {
      for (int ax1 = 0; ax1 < 16; ++ax1) {
        A_shared_local[(ax1)] = A_shared[((((((int)threadIdx.y) * 264) + (k_inner_outer * 16)) + ax1))];
      }
      for (int ax0 = 0; ax0 < 16; ++ax0) {
        for (int ax11 = 0; ax11 < 8; ++ax11) {
          B_shared_local[(((ax0 * 8) + ax11))] = B_shared[((((((k_inner_outer * 512) + (ax0 * 32)) + (((int)threadIdx.z) * 16)) + (((int)threadIdx.x) * 8)) + ax11))];
        }
      }
      for (int k_inner_inner = 0; k_inner_inner < 16; ++k_inner_inner) {
        for (int j_c = 0; j_c < 8; ++j_c) {
          compute_local[(j_c)] = (compute_local[(j_c)] + (((float)A_shared_local[(k_inner_inner)]) * ((float)B_shared_local[(((k_inner_inner * 8) + j_c))])));
        }
      }
    }
  }
  for (int j_inner_inner_inner = 0; j_inner_inner_inner < 8; ++j_inner_inner_inner) {
    compute[((((((((int)threadIdx.y) * 512) + (((int)blockIdx.x) * 32)) + (((int)threadIdx.z) * 16)) + (((int)threadIdx.x) * 8)) + j_inner_inner_inner))] = compute_local[(j_inner_inner_inner)];
  }
}


Time cost of this operator: 0.000041