Hi lhutton,
this is the output, sorry I have to cut it, since it is very long:
def @main(%input: Tensor[(1, 3, 224, 224), float32], %features.0.0_weight: Tensor[(32, 3, 3, 3), float32], %features.0.0_bias: Tensor[(32), float32], %features.1.conv.0.0_weight: Tensor[(32, 1, 3, 3), float32], %features.1.conv.0.0_bias: Tensor[(32), float32], %features.1.conv.1_weight: Tensor[(16, 32, 1, 1), float32], %features.1.conv.1_bias: Tensor[(16), float32], %features.2.conv.0.0_weight: Tensor[(96, 16, 1, 1), float32], %features.2.conv.0.0_bias: Tensor[(96), float32], %features.2.conv.1.0_weight: Tensor[(96, 1, 3, 3), float32], %features.2.conv.1.0_bias: Tensor[(96), float32], %features.2.conv.2_weight: Tensor[(24, 96, 1, 1), float32], %features.2.conv.2_bias: Tensor[(24), float32], %features.3.conv.0.0_weight: Tensor[(144, 24, 1, 1), float32], %features.3.conv.0.0_bias: Tensor[(144), float32], %features.3.conv.1.0_weight: Tensor[(144, 1, 3, 3), float32], %features.3.conv.1.0_bias: Tensor[(144), float32], %features.3.conv.2_weight: Tensor[(24, 144, 1, 1), float32], %features.3.conv.2_bias: Tensor[(24), float32], %features.4.conv.0.0_weight: Tensor[(144, 24, 1, 1), float32], %features.4.conv.0.0_bias: Tensor[(144), float32], %features.4.conv.1.0_weight: Tensor[(144, 1, 3, 3), float32], %features.4.conv.1.0_bias: Tensor[(144), float32], %features.4.conv.2_weight: Tensor[(32, 144, 1, 1), float32], %features.4.conv.2_bias: Tensor[(32), float32], %features.5.conv.0.0_weight: Tensor[(192, 32, 1, 1), float32], %features.5.conv.0.0_bias: Tensor[(192), float32], %features.5.conv.1.0_weight: Tensor[(192, 1, 3, 3), float32], %features.5.conv.1.0_bias: Tensor[(192), float32], %features.5.conv.2_weight: Tensor[(32, 192, 1, 1), float32], %features.5.conv.2_bias: Tensor[(32), float32], %features.6.conv.0.0_weight: Tensor[(192, 32, 1, 1), float32], %features.6.conv.0.0_bias: Tensor[(192), float32], %features.6.conv.1.0_weight: Tensor[(192, 1, 3, 3), float32], %features.6.conv.1.0_bias: Tensor[(192), float32], %features.6.conv.2_weight: Tensor[(32, 192, 1, 1), float32], %features.6.conv.2_bias: Tensor[(32), float32], %features.7.conv.0.0_weight: Tensor[(192, 32, 1, 1), float32], %features.7.conv.0.0_bias: Tensor[(192), float32], %features.7.conv.1.0_weight: Tensor[(192, 1, 3, 3), float32], %features.7.conv.1.0_bias: Tensor[(192), float32], %features.7.conv.2_weight: Tensor[(64, 192, 1, 1), float32], %features.7.conv.2_bias: Tensor[(64), float32], %features.8.conv.0.0_weight: Tensor[(384, 64, 1, 1), float32], %features.8.conv.0.0_bias: Tensor[(384), float32], %features.8.conv.1.0_weight: Tensor[(384, 1, 3, 3), float32], %features.8.conv.1.0_bias: Tensor[(384), float32], %features.8.conv.2_weight: Tensor[(64, 384, 1, 1), float32], %features.8.conv.2_bias: Tensor[(64), float32], %features.9.conv.0.0_weight: Tensor[(384, 64, 1, 1), float32], %features.9.conv.0.0_bias: Tensor[(384), float32], %features.9.conv.1.0_weight: Tensor[(384, 1, 3, 3), float32], %features.9.conv.1.0_bias: Tensor[(384), float32], %features.9.conv.2_weight: Tensor[(64, 384, 1, 1), float32], %features.9.conv.2_bias: Tensor[(64), float32], %features.10.conv.0.0_weight: Tensor[(384, 64, 1, 1), float32], %features.10.conv.0.0_bias: Tensor[(384), float32], %features.10.conv.1.0_weight: Tensor[(384, 1, 3, 3), float32], %features.10.conv.1.0_bias: Tensor[(384), float32], %features.10.conv.2_weight: Tensor[(64, 384, 1, 1), float32], %features.10.conv.2_bias: Tensor[(64), float32], %features.11.conv.0.0_weight: Tensor[(384, 64, 1, 1), float32], %features.11.conv.0.0_bias: Tensor[(384), float32], %features.11.conv.1.0_weight: Tensor[(384, 1, 3, 3), float32], %features.11.conv.1.0_bias: Tensor[(384), float32], %features.11.conv.2_weight: Tensor[(96, 384, 1, 1), float32], %features.11.conv.2_bias: Tensor[(96), float32], %features.12.conv.0.0_weight: Tensor[(576, 96, 1, 1), float32], %features.12.conv.0.0_bias: Tensor[(576), float32], %features.12.conv.1.0_weight: Tensor[(576, 1, 3, 3), float32], %features.12.conv.1.0_bias: Tensor[(576), float32], %features.12.conv.2_weight: Tensor[(96, 576, 1, 1), float32], %features.12.conv.2_bias: Tensor[(96), float32], %features.13.conv.0.0_weight: Tensor[(576, 96, 1, 1), float32], %features.13.conv.0.0_bias: Tensor[(576), float32], %features.13.conv.1.0_weight: Tensor[(576, 1, 3, 3), float32], %features.13.conv.1.0_bias: Tensor[(576), float32], %features.13.conv.2_weight: Tensor[(96, 576, 1, 1), float32], %features.13.conv.2_bias: Tensor[(96), float32], %features.14.conv.0.0_weight: Tensor[(576, 96, 1, 1), float32], %features.14.conv.0.0_bias: Tensor[(576), float32], %features.14.conv.1.0_weight: Tensor[(576, 1, 3, 3), float32], %features.14.conv.1.0_bias: Tensor[(576), float32], %features.14.conv.2_weight: Tensor[(160, 576, 1, 1), float32], %features.14.conv.2_bias: Tensor[(160), float32], %features.15.conv.0.0_weight: Tensor[(960, 160, 1, 1), float32], %features.15.conv.0.0_bias: Tensor[(960), float32], %features.15.conv.1.0_weight: Tensor[(960, 1, 3, 3), float32], %features.15.conv.1.0_bias: Tensor[(960), float32], %features.15.conv.2_weight: Tensor[(160, 960, 1, 1), float32], %features.15.conv.2_bias: Tensor[(160), float32], %features.16.conv.0.0_weight: Tensor[(960, 160, 1, 1), float32], %features.16.conv.0.0_bias: Tensor[(960), float32], %features.16.conv.1.0_weight: Tensor[(960, 1, 3, 3), float32], %features.16.conv.1.0_bias: Tensor[(960), float32], %features.16.conv.2_weight: Tensor[(160, 960, 1, 1), float32], %features.16.conv.2_bias: Tensor[(160), float32], %features.17.conv.0.0_weight: Tensor[(960, 160, 1, 1), float32], %features.17.conv.0.0_bias: Tensor[(960), float32], %features.17.conv.1.0_weight: Tensor[(960, 1, 3, 3), float32], %features.17.conv.1.0_bias: Tensor[(960), float32], %features.17.conv.2_weight: Tensor[(320, 960, 1, 1), float32], %features.17.conv.2_bias: Tensor[(320), float32], %features.18.0_weight: Tensor[(1280, 320, 1, 1), float32], %features.18.0_bias: Tensor[(1280), float32], %classifier.1._packed_params_weight: Tensor[(1000, 1280), float32], %classifier.1._packed_params_bias: Tensor[(1000), float32]) -> Tensor[(1, 1000), float32] {
%0 = qnn.quantize(%input, 0.0359743f /* ty=float32 */, 54 /* ty=int32 */, out_dtype="uint8", axis=1) /* ty=Tensor[(1, 3, 224, 224), uint8] */;
%1 = nn.pad(%0, 54f /* ty=float32 */, pad_width=[[0, 0], [0, 0], [1, 1], [1, 1]]) /* ty=Tensor[(1, 3, 226, 226), uint8] */;
%2 = qnn.quantize(%features.0.0_weight, meta[relay.Constant][0] /* ty=Tensor[(32), float32] */, 0 /* ty=int32 */, out_dtype="int8", axis=0) /* ty=Tensor[(32, 3, 3, 3), int8] */;
%3 = qnn.conv2d(%1, %2, 54 /* ty=int32 */, 0 /* ty=int32 */, 0.0359743f /* ty=float32 */, meta[relay.Constant][0] /* ty=Tensor[(32), float32] */, strides=[2, 2], padding=[0, 0, 0, 0], channels=32, kernel_size=[3, 3], out_dtype="int32") /* ty=Tensor[(1, 32, 112, 112), int32] */;
%4 = qnn.quantize(%features.0.0_bias, meta[relay.Constant][1] /* ty=Tensor[(32), float32] */, 0 /* ty=int32 */, out_dtype="int32", axis=0) /* ty=Tensor[(32), int32] */;
%5 = nn.bias_add(%3, %4) /* ty=Tensor[(1, 32, 112, 112), int32] */;
%6 = qnn.requantize(%5, meta[relay.Constant][2] /* ty=Tensor[(32), float32] */, 0 /* ty=int32 */, 0.0132992f /* ty=float32 */, 0 /* ty=int32 */, axis=1, out_dtype="int32") /* ty=Tensor[(1, 32, 112, 112), int32] */;
%7 = clip(%6, a_min=0f, a_max=255f) /* ty=Tensor[(1, 32, 112, 112), int32] */;
%8 = cast(%7, dtype="uint8") /* ty=Tensor[(1, 32, 112, 112), uint8] */;
%9 = nn.pad(%8, 0f /* ty=float32 */, pad_width=[[0, 0], [0, 0], [1, 1], [1, 1]]) /* ty=Tensor[(1, 32, 114, 114), uint8] */;
%10 = qnn.quantize(%features.1.conv.0.0_weight, meta[relay.Constant][3] /* ty=Tensor[(32), float32] */, 0 /* ty=int32 */, out_dtype="int8", axis=0) /* ty=Tensor[(32, 1, 3, 3), int8] */;
%11 = qnn.conv2d(%9, %10, 0 /* ty=int32 */, 0 /* ty=int32 */, 0.0132992f /* ty=float32 */, meta[relay.Constant][3] /* ty=Tensor[(32), float32] */, padding=[0, 0, 0, 0], groups=32, channels=32, kernel_size=[3, 3], out_dtype="int32") /* ty=Tensor[(1, 32, 112, 112), int32] */;
%12 = qnn.quantize(%features.1.conv.0.0_bias, meta[relay.Constant][4] /* ty=Tensor[(32), float32] */, 0 /* ty=int32 */, out_dtype="int32", axis=0) /* ty=Tensor[(32), int32] */;
%13 = nn.bias_add(%11, %12) /* ty=Tensor[(1, 32, 112, 112), int32] */;
%14 = qnn.requantize(%13, meta[relay.Constant][5] /* ty=Tensor[(32), float32] */, 0 /* ty=int32 */, 0.0710117f /* ty=float32 */, 0 /* ty=int32 */, axis=1, out_dtype="int32") /* ty=Tensor[(1, 32, 112, 112), int32] */;
%15 = clip(%14, a_min=0f, a_max=255f) /* ty=Tensor[(1, 32, 112, 112), int32] */;
%16 = cast(%15, dtype="uint8") /* ty=Tensor[(1, 32, 112, 112), uint8] */;
%17 = qnn.quantize(%features.1.conv.1_weight, meta[relay.Constant][6] /* ty=Tensor[(16), float32] */, 0 /* ty=int32 */, out_dtype="int8", axis=0) /* ty=Tensor[(16, 32, 1, 1), int8] */;
%18 = qnn.conv2d(%16, %17, 0 /* ty=int32 */, 0 /* ty=int32 */, 0.0710117f /* ty=float32 */, meta[relay.Constant][6] /* ty=Tensor[(16), float32] */, padding=[0, 0, 0, 0], channels=16, kernel_size=[1, 1], out_dtype="int32") /* ty=Tensor[(1, 16, 112, 112), int32] */;
%19 = qnn.quantize(%features.1.conv.1_bias, meta[relay.Constant][7] /* ty=Tensor[(16), float32] */, 0 /* ty=int32 */, out_dtype="int32", axis=0) /* ty=Tensor[(16), int32] */;
%20 = nn.bias_add(%18, %19) /* ty=Tensor[(1, 16, 112, 112), int32] */;
%21 = qnn.requantize(%20, meta[relay.Constant][8] /* ty=Tensor[(16), float32] */, 0 /* ty=int32 */, 0.0674597f /* ty=float32 */, 58 /* ty=int32 */, axis=1, out_dtype="int32") /* ty=Tensor[(1, 16, 112, 112), int32] */;
%22 = clip(%21, a_min=0f, a_max=255f) /* ty=Tensor[(1, 16, 112, 112), int32] */;
%23 = cast(%22, dtype="uint8") /* ty=Tensor[(1, 16, 112, 112), uint8] */;
%24 = qnn.quantize(%features.2.conv.0.0_weight, meta[relay.Constant][9] /* ty=Tensor[(96), float32] */, 0 /* ty=int32 */, out_dtype="int8", axis=0) /* ty=Tensor[(96, 16, 1, 1), int8] */;
%25 = qnn.conv2d(%23, %24, 58 /* ty=int32 */, 0 /* ty=int32 */, 0.0674597f /* ty=float32 */, meta[relay.Constant][9] /* ty=Tensor[(96), float32] */, padding=[0, 0, 0, 0], channels=96, kernel_size=[1, 1], out_dtype="int32") /* ty=Tensor[(1, 96, 112, 112), int32] */;
%26 = qnn.quantize(%features.2.conv.0.0_bias, meta[relay.Constant][10] /* ty=Tensor[(96), float32] */, 0 /* ty=int32 */, out_dtype="int32", axis=0) /* ty=Tensor[(96), int32] */;
%27 = nn.bias_add(%25, %26) /* ty=Tensor[(1, 96, 112, 112), int32] */;
%28 = qnn.requantize(%27, meta[relay.Constant][11] /* ty=Tensor[(96), float32] */, 0 /* ty=int32 */, 0.0274019f /* ty=float32 */, 0 /* ty=int32 */, axis=1, out_dtype="int32") /* ty=Tensor[(1, 96, 112, 112), int32] */;
%29 = clip(%28, a_min=0f, a_max=255f) /* ty=Tensor[(1, 96, 112, 112), int32] */;
%30 = cast(%29, dtype="uint8") /* ty=Tensor[(1, 96, 112, 112), uint8] */;
%31 = nn.pad(%30, 0f /* ty=float32 */, pad_width=[[0, 0], [0, 0], [1, 1], [1, 1]]) /* ty=Tensor[(1, 96, 114, 114), uint8] */;
%32 = qnn.quantize(%features.2.conv.1.0_weight, meta[relay.Constant][12] /* ty=Tensor[(96), float32] */, 0 /* ty=int32 */, out_dtype="int8", axis=0) /* ty=Tensor[(96, 1, 3, 3), int8] */;
%33 = qnn.conv2d(%31, %32, 0 /* ty=int32 */, 0 /* ty=int32 */, 0.0274019f /* ty=float32 */, meta[relay.Constant][12] /* ty=Tensor[(96), float32] */, strides=[2, 2], padding=[0, 0, 0, 0], groups=96, channels=96, kernel_size=[3, 3], out_dtype="int32") /* ty=Tensor[(1, 96, 56, 56), int32] */;
%34 = qnn.quantize(%features.2.conv.1.0_bias, meta[relay.Constant][13] /* ty=Tensor[(96), float32] */, 0 /* ty=int32 */, out_dtype="int32", axis=0) /* ty=Tensor[(96), int32] */;
%35 = nn.bias_add(%33, %34) /* ty=Tensor[(1, 96, 56, 56), int32] */;
%36 = qnn.requantize(%35, meta[relay.Constant][14] /* ty=Tensor[(96), float32] */, 0 /* ty=int32 */, 0.018431f /* ty=float32 */, 0 /* ty=int32 */, axis=1, out_dtype="int32") /* ty=Tensor[(1, 96, 56, 56), int32] */;
%37 = clip(%36, a_min=0f, a_max=255f) /* ty=Tensor[(1, 96, 56, 56), int32] */;
%38 = cast(%37, dtype="uint8") /* ty=Tensor[(1, 96, 56, 56), uint8] */;
%39 = qnn.quantize(%features.2.conv.2_weight, meta[relay.Constant][15] /* ty=Tensor[(24), float32] */, 0 /* ty=int32 */, out_dtype="int8", axis=0) /* ty=Tensor[(24, 96, 1, 1), int8] */;
%40 = qnn.conv2d(%38, %39, 0 /* ty=int32 */, 0 /* ty=int32 */, 0.018431f /* ty=float32 */, meta[relay.Constant][15] /* ty=Tensor[(24), float32] */, padding=[0, 0, 0, 0], channels=24, kernel_size=[1, 1], out_dtype="int32") /* ty=Tensor[(1, 24, 56, 56), int32] */;
%41 = qnn.quantize(%features.2.conv.2_bias, meta[relay.Constant][16] /* ty=Tensor[(24), float32] */, 0 /* ty=int32 */, out_dtype="int32", axis=0) /* ty=Tensor[(24), int32] */;
%42 = nn.bias_add(%40, %41) /* ty=Tensor[(1, 24, 56, 56), int32] */;
%43 = qnn.requantize(%42, meta[relay.Constant][17] /* ty=Tensor[(24), float32] */, 0 /* ty=int32 */, 0.044329f /* ty=float32 */, 59 /* ty=int32 */, axis=1, out_dtype="int32") /* ty=Tensor[(1, 24, 56, 56), int32] */;
%44 = clip(%43, a_min=0f, a_max=255f) /* ty=Tensor[(1, 24, 56, 56), int32] */;
%45 = cast(%44, dtype="uint8") /* ty=Tensor[(1, 24, 56, 56), uint8] */;
%46 = qnn.quantize(%features.3.conv.0.0_weight, meta[relay.Constant][18] /* ty=Tensor[(144), float32] */, 0 /* ty=int32 */, out_dtype="int8", axis=0) /* ty=Tensor[(144, 24, 1, 1), int8] */;
%47 = qnn.conv2d(%45, %46, 59 /* ty=int32 */, 0 /* ty=int32 */, 0.044329f /* ty=float32 */, meta[relay.Constant][18] /* ty=Tensor[(144), float32] */, padding=[0, 0, 0, 0], channels=144, kernel_size=[1, 1], out_dtype="int32") /* ty=Tensor[(1, 144, 56, 56), int32] */;
%48 = qnn.quantize(%features.3.conv.0.0_bias, meta[relay.Constant][19] /* ty=Tensor[(144), float32] */, 0 /* ty=int32 */, out_dtype="int32", axis=0) /* ty=Tensor[(144), int32] */;
%49 = nn.bias_add(%47, %48) /* ty=Tensor[(1, 144, 56, 56), int32] */;
%50 = qnn.requantize(%49, meta[relay.Constant][20] /* ty=Tensor[(144), float32] */, 0 /* ty=int32 */, 0.00914225f /* ty=float32 */, 0 /* ty=int32 */, axis=1, out_dtype="int32") /* ty=Tensor[(1, 144, 56, 56), int32] */;
%51 = clip(%50, a_min=0f, a_max=255f) /* ty=Tensor[(1, 144, 56, 56), int32] */;
%52 = cast(%51, dtype="uint8") /* ty=Tensor[(1, 144, 56, 56), uint8] */;
%53 = nn.pad(%52, 0f /* ty=float32 */, pad_width=[[0, 0], [0, 0], [1, 1], [1, 1]]) /* ty=Tensor[(1, 144, 58, 58), uint8] */;
%54 = qnn.quantize(%features.3.conv.1.0_weight, meta[relay.Constant][21] /* ty=Tensor[(144), float32] */, 0 /* ty=int32 */, out_dtype="int8", axis=0) /* ty=Tensor[(144, 1, 3, 3), int8] */;
%55 = qnn.conv2d(%53, %54, 0 /* ty=int32 */, 0 /* ty=int32 */, 0.00914225f /* ty=float32 */, meta[relay.Constant][21] /* ty=Tensor[(144), float32] */, padding=[0, 0, 0, 0], groups=144, channels=144, kernel_size=[3, 3], out_dtype="int32") /* ty=Tensor[(1, 144, 56, 56), int32] */;
%56 = qnn.quantize(%features.3.conv.1.0_bias, meta[relay.Constant][22] /* ty=Tensor[(144), float32] */, 0 /* ty=int32 */, out_dtype="int32", axis=0) /* ty=Tensor[(144), int32] */;
%57 = nn.bias_add(%55, %56) /* ty=Tensor[(1, 144, 56, 56), int32] */;
%58 = qnn.requantize(%57, meta[relay.Constant][23] /* ty=Tensor[(144), float32] */, 0 /* ty=int32 */, 0.0202167f /* ty=float32 */, 0 /* ty=int32 */, axis=1, out_dtype="int32") /* ty=Tensor[(1, 144, 56, 56), int32] */;
%59 = clip(%58, a_min=0f, a_max=255f) /* ty=Tensor[(1, 144, 56, 56), int32] */;
%60 = cast(%59, dtype="uint8") /* ty=Tensor[(1, 144, 56, 56), uint8] */;
%61 = qnn.quantize(%features.3.conv.2_weight, meta[relay.Constant][24] /* ty=Tensor[(24), float32] */, 0 /* ty=int32 */, out_dtype="int8", axis=0) /* ty=Tensor[(24, 144, 1, 1), int8] */;
%62 = qnn.conv2d(%60, %61, 0 /* ty=int32 */, 0 /* ty=int32 */, 0.0202167f /* ty=float32 */, meta[relay.Constant][24] /* ty=Tensor[(24), float32] */, padding=[0, 0, 0, 0], channels=24, kernel_size=[1, 1], out_dtype="int32") /* ty=Tensor[(1, 24, 56, 56), int32] */;
%63 = qnn.quantize(%features.3.conv.2_bias, meta[relay.Constant][25] /* ty=Tensor[(24), float32] */, 0 /* ty=int32 */, out_dtype="int32", axis=0) /* ty=Tensor[(24), int32] */;
%64 = nn.bias_add(%62, %63) /* ty=Tensor[(1, 24, 56, 56), int32] */;
%65 = qnn.requantize(%64, meta[relay.Constant][26] /* ty=Tensor[(24), float32] */, 0 /* ty=int32 */, 0.0576775f /* ty=float32 */, 58 /* ty=int32 */, axis=1, out_dtype="int32") /* ty=Tensor[(1, 24, 56, 56), int32] */;
%66 = clip(%65, a_min=0f, a_max=255f) /* ty=Tensor[(1, 24, 56, 56), int32] */;
%67 = cast(%66, dtype="uint8") /* ty=Tensor[(1, 24, 56, 56), uint8] */;
%68 = @tvmgen_default_arm_compute_lib_main_0(%45, %67) /* ty=Tensor[(1, 24, 56, 56), uint8] */;
%69 = qnn.quantize(%features.4.conv.0.0_weight, meta[relay.Constant][27] /* ty=Tensor[(144), float32] */, 0 /* ty=int32 */, out_dtype="int8", axis=0) /* ty=Tensor[(144, 24, 1, 1), int8] */;
%70 = qnn.conv2d(%68, %69, 61 /* ty=int32 */, 0 /* ty=int32 */, 0.0764764f /* ty=float32 */, meta[relay.Constant][27] /* ty=Tensor[(144), float32] */, padding=[0, 0, 0, 0], channels=144, kernel_size=[1, 1], out_dtype="int32") /* ty=Tensor[(1, 144, 56, 56), int32] */;
%71 = qnn.quantize(%features.4.conv.0.0_bias, meta[relay.Constant][28] /* ty=Tensor[(144), float32] */, 0 /* ty=int32 */, out_dtype="int32", axis=0) /* ty=Tensor[(144), int32] */;
%72 = nn.bias_add(%70, %71) /* ty=Tensor[(1, 144, 56, 56), int32] */;
%73 = qnn.requantize(%72, meta[relay.Constant][29] /* ty=Tensor[(144), float32] */, 0 /* ty=int32 */, 0.0126277f /* ty=float32 */, 0 /* ty=int32 */, axis=1, out_dtype="int32") /* ty=Tensor[(1, 144, 56, 56), int32] */;
%74 = clip(%73, a_min=0f, a_max=255f) /* ty=Tensor[(1, 144, 56, 56), int32] */;
%75 = cast(%74, dtype="uint8") /* ty=Tensor[(1, 144, 56, 56), uint8] */;
%76 = nn.pad(%75, 0f /* ty=float32 */, pad_width=[[0, 0], [0, 0], [1, 1], [1, 1]]) /* ty=Tensor[(1, 144, 58, 58), uint8] */;
%77 = qnn.quantize(%features.4.conv.1.0_weight, meta[relay.Constant][30] /* ty=Tensor[(144), float32] */, 0 /* ty=int32 */, out_dtype="int8", axis=0) /* ty=Tensor[(144, 1, 3, 3), int8] */;
%78 = qnn.conv2d(%76, %77, 0 /* ty=int32 */, 0 /* ty=int32 */, 0.0126277f /* ty=float32 */, meta[relay.Constant][30] /* ty=Tensor[(144), float32] */, strides=[2, 2], padding=[0, 0, 0, 0], groups=144, channels=144, kernel_size=[3, 3], out_dtype="int32") /* ty=Tensor[(1, 144, 28, 28), int32] */;
%79 = qnn.quantize(%features.4.conv.1.0_bias, meta[relay.Constant][31] /* ty=Tensor[(144), float32] */, 0 /* ty=int32 */, out_dtype="int32", axis=0) /* ty=Tensor[(144), int32] */;
%80 = nn.bias_add(%78, %79) /* ty=Tensor[(1, 144, 28, 28), int32] */;
%81 = qnn.requantize(%80, meta[relay.Constant][32] /* ty=Tensor[(144), float32] */, 0 /* ty=int32 */, 0.0223427f /* ty=float32 */, 0 /* ty=int32 */, axis=1, out_dtype="int32") /* ty=Tensor[(1, 144, 28, 28), int32] */;
%82 = clip(%81, a_min=0f, a_max=255f) /* ty=Tensor[(1, 144, 28, 28), int32] */;
%83 = cast(%82, dtype="uint8") /* ty=Tensor[(1, 144, 28, 28), uint8] */;
%84 = qnn.quantize(%features.4.conv.2_weight, meta[relay.Constant][33] /* ty=Tensor[(32), float32] */, 0 /* ty=int32 */, out_dtype="int8", axis=0) /* ty=Tensor[(32, 144, 1, 1), int8] */;
%85 = qnn.conv2d(%83, %84, 0 /* ty=int32 */, 0 /* ty=int32 */, 0.0223427f /* ty=float32 */, meta[relay.Constant][33] /* ty=Tensor[(32), float32] */, padding=[0, 0, 0, 0], channels=32, kernel_size=[1, 1], out_dtype="int32") /* ty=Tensor[(1, 32, 28, 28), int32] */;
%86 = qnn.quantize(%features.4.conv.2_bias, meta[relay.Constant][34] /* ty=Tensor[(32), float32] */, 0 /* ty=int32 */, out_dtype="int32", axis=0) /* ty=Tensor[(32), int32] */;
%87 = nn.bias_add(%85, %86) /* ty=Tensor[(1, 32, 28, 28), int32] */;
%88 = qnn.requantize(%87, meta[relay.Constant][35] /* ty=Tensor[(32), float32] */, 0 /* ty=int32 */, 0.0386601f /* ty=float32 */, 72 /* ty=int32 */, axis=1, out_dtype="int32") /* ty=Tensor[(1, 32, 28, 28), int32] */;
%89 = clip(%88, a_min=0f, a_max=255f) /* ty=Tensor[(1, 32, 28, 28), int32] */;
%90 = cast(%89, dtype="uint8") /* ty=Tensor[(1, 32, 28, 28), uint8] */;
%91 = qnn.quantize(%features.5.conv.0.0_weight, meta[relay.Constant][36] /* ty=Tensor[(192), float32] */, 0 /* ty=int32 */, out_dtype="int8", axis=0) /* ty=Tensor[(192, 32, 1, 1), int8] */;
%92 = qnn.conv2d(%90, %91, 72 /* ty=int32 */, 0 /* ty=int32 */, 0.0386601f /* ty=float32 */, meta[relay.Constant][36] /* ty=Tensor[(192), float32] */, padding=[0, 0, 0, 0], channels=192, kernel_size=[1, 1], out_dtype="int32") /* ty=Tensor[(1, 192, 28, 28), int32] */;
%93 = qnn.quantize(%features.5.conv.0.0_bias, meta[relay.Constant][37] /* ty=Tensor[(192), float32] */, 0 /* ty=int32 */, out_dtype="int32", axis=0) /* ty=Tensor[(192), int32] */;
%94 = nn.bias_add(%92, %93) /* ty=Tensor[(1, 192, 28, 28), int32] */;
%95 = qnn.requantize(%94, meta[relay.Constant][38] /* ty=Tensor[(192), float32] */, 0 /* ty=int32 */, 0.00836057f /* ty=float32 */, 0 /* ty=int32 */, axis=1, out_dtype="int32") /* ty=Tensor[(1, 192, 28, 28), int32] */;
%96 = clip(%95, a_min=0f, a_max=255f) /* ty=Tensor[(1, 192, 28, 28), int32] */;
%97 = cast(%96, dtype="uint8") /* ty=Tensor[(1, 192, 28, 28), uint8] */;
%98 = nn.pad(%97, 0f /* ty=float32 */, pad_width=[[0, 0], [0, 0], [1, 1], [1, 1]]) /* ty=Tensor[(1, 192, 30, 30), uint8] */;
%99 = qnn.quantize(%features.5.conv.1.0_weight, meta[relay.Constant][39] /* ty=Tensor[(192), float32] */, 0 /* ty=int32 */, out_dtype="int8", axis=0) /* ty=Tensor[(192, 1, 3, 3), int8] */;
%100 = qnn.conv2d(%98, %99, 0 /* ty=int32 */, 0 /* ty=int32 */, 0.00836057f /* ty=float32 */, meta[relay.Constant][39] /* ty=Tensor[(192), float32] */, padding=[0, 0, 0, 0], groups=192, channels=192, kernel_size=[3, 3], out_dtype="int32") /* ty=Tensor[(1, 192, 28, 28), int32] */;
%101 = qnn.quantize(%features.5.conv.1.0_bias, meta[relay.Constant][40] /* ty=Tensor[(192), float32] */, 0 /* ty=int32 */, out_dtype="int32", axis=0) /* ty=Tensor[(192), int32] */;
%102 = nn.bias_add(%100, %101) /* ty=Tensor[(1, 192, 28, 28), int32] */;
%103 = qnn.requantize(%102, meta[relay.Constant][41] /* ty=Tensor[(192), float32] */, 0 /* ty=int32 */, 0.0112039f /* ty=float32 */, 0 /* ty=int32 */, axis=1, out_dtype="int32") /* ty=Tensor[(1, 192, 28, 28), int32] */;
%104 = clip(%103, a_min=0f, a_max=255f) /* ty=Tensor[(1, 192, 28, 28), int32] */;
%105 = cast(%104, dtype="uint8") /* ty=Tensor[(1, 192, 28, 28), uint8] */;
%106 = qnn.quantize(%features.5.conv.2_weight, meta[relay.Constant][42] /* ty=Tensor[(32), float32] */, 0 /* ty=int32 */, out_dtype="int8", axis=0) /* ty=Tensor[(32, 192, 1, 1), int8] */;
%107 = qnn.conv2d(%105, %106, 0 /* ty=int32 */, 0 /* ty=int32 */, 0.0112039f /* ty=float32 */, meta[relay.Constant][42] /* ty=Tensor[(32), float32] */, padding=[0, 0, 0, 0], channels=32, kernel_size=[1, 1], out_dtype="int32") /* ty=Tensor[(1, 32, 28, 28), int32] */;
%108 = qnn.quantize(%features.5.conv.2_bias, meta[relay.Constant][43] /* ty=Tensor[(32), float32] */, 0 /* ty=int32 */, out_dtype="int32", axis=0) /* ty=Tensor[(32), int32] */;
%109 = nn.bias_add(%107, %108) /* ty=Tensor[(1, 32, 28, 28), int32] */;
%110 = qnn.requantize(%109, meta[relay.Constant][44] /* ty=Tensor[(32), float32] */, 0 /* ty=int32 */, 0.0291111f /* ty=float32 */, 69 /* ty=int32 */, axis=1, out_dtype="int32") /* ty=Tensor[(1, 32, 28, 28), int32] */;
%111 = clip(%110, a_min=0f, a_max=255f) /* ty=Tensor[(1, 32, 28, 28), int32] */;
%112 = cast(%111, dtype="uint8") /* ty=Tensor[(1, 32, 28, 28), uint8] */;
%113 = @tvmgen_default_arm_compute_lib_main_8(%90, %112) /* ty=Tensor[(1, 32, 28, 28), uint8] */;
%114 = qnn.quantize(%features.6.conv.0.0_weight, meta[relay.Constant][45] /* ty=Tensor[(192), float32] */, 0 /* ty=int32 */, out_dtype="int8", axis=0) /* ty=Tensor[(192, 32, 1, 1), int8] */;
%115 = qnn.conv2d(%113, %114, 74 /* ty=int32 */, 0 /* ty=int32 */, 0.049797f /* ty=float32 */, meta[relay.Constant][45] /* ty=Tensor[(192), float32] */, padding=[0, 0, 0, 0], channels=192, kernel_size=[1, 1], out_dtype="int32") /* ty=Tensor[(1, 192, 28, 28), int32] */;
%116 = qnn.quantize(%features.6.conv.0.0_bias, meta[relay.Constant][46] /* ty=Tensor[(192), float32] */, 0 /* ty=int32 */, out_dtype="int32", axis=0) /* ty=Tensor[(192), int32] */;
%117 = nn.bias_add(%115, %116) /* ty=Tensor[(1, 192, 28, 28), int32] */;
%118 = qnn.requantize(%117, meta[relay.Constant][47] /* ty=Tensor[(192), float32] */, 0 /* ty=int32 */, 0.0105545f /* ty=float32 */, 0 /* ty=int32 */, axis=1, out_dtype="int32") /* ty=Tensor[(1, 192, 28, 28), int32] */;
%119 = clip(%118, a_min=0f, a_max=255f) /* ty=Tensor[(1, 192, 28, 28), int32] */;
%120 = cast(%119, dtype="uint8") /* ty=Tensor[(1, 192, 28, 28), uint8] */;
%121 = nn.pad(%120, 0f /* ty=float32 */, pad_width=[[0, 0], [0, 0], [1, 1], [1, 1]]) /* ty=Tensor[(1, 192, 30, 30), uint8] */;
%122 = qnn.quantize(%features.6.conv.1.0_weight, meta[relay.Constant][48] /* ty=Tensor[(192), float32] */, 0 /* ty=int32 */, out_dtype="int8", axis=0) /* ty=Tensor[(192, 1, 3, 3), int8] */;
%123 = qnn.conv2d(%121, %122, 0 /* ty=int32 */, 0 /* ty=int32 */, 0.0105545f /* ty=float32 */, meta[relay.Constant][48] /* ty=Tensor[(192), float32] */, padding=[0, 0, 0, 0], groups=192, channels=192, kernel_size=[3, 3], out_dtype="int32") /* ty=Tensor[(1, 192, 28, 28), int32] */;
%124 = qnn.quantize(%features.6.conv.1.0_bias, meta[relay.Constant][49] /* ty=Tensor[(192), float32] */, 0 /* ty=int32 */, out_dtype="int32", axis=0) /* ty=Tensor[(192), int32] */;
%125 = nn.bias_add(%123, %124) /* ty=Tensor[(1, 192, 28, 28), int32] */;
%126 = qnn.requantize(%125, meta[relay.Constant][50] /* ty=Tensor[(192), float32] */, 0 /* ty=int32 */, 0.0122615f /* ty=float32 */, 0 /* ty=int32 */, axis=1, out_dtype="int32") /* ty=Tensor[(1, 192, 28, 28), int32] */;
%127 = clip(%126, a_min=0f, a_max=255f) /* ty=Tensor[(1, 192, 28, 28), int32] */;
%128 = cast(%127, dtype="uint8") /* ty=Tensor[(1, 192, 28, 28), uint8] */;
%129 = qnn.quantize(%features.6.conv.2_weight, meta[relay.Constant][51] /* ty=Tensor[(32), float32] */, 0 /* ty=int32 */, out_dtype="int8", axis=0) /* ty=Tensor[(32, 192, 1, 1), int8] */;
%130 = qnn.conv2d(%128, %129, 0 /* ty=int32 */, 0 /* ty=int32 */, 0.0122615f /* ty=float32 */, meta[relay.Constant][51] /* ty=Tensor[(32), float32] */, padding=[0, 0, 0, 0], channels=32, kernel_size=[1, 1], out_dtype="int32") /* ty=Tensor[(1, 32, 28, 28), int32] */;
%131 = qnn.quantize(%features.6.conv.2_bias, meta[relay.Constant][52] /* ty=Tensor[(32), float32] */, 0 /* ty=int32 */, out_dtype="int32", axis=0) /* ty=Tensor[(32), int32] */;
%132 = nn.bias_add(%130, %131) /* ty=Tensor[(1, 32, 28, 28), int32] */;
%133 = qnn.requantize(%132, meta[relay.Constant][53] /* ty=Tensor[(32), float32] */, 0 /* ty=int32 */, 0.0446687f /* ty=float32 */, 62 /* ty=int32 */, axis=1, out_dtype="int32") /* ty=Tensor[(1, 32, 28, 28), int32] */;
%134 = clip(%133, a_min=0f, a_max=255f) /* ty=Tensor[(1, 32, 28, 28), int32] */;
%135 = cast(%134, dtype="uint8") /* ty=Tensor[(1, 32, 28, 28), uint8] */;
%136 = @tvmgen_default_arm_compute_lib_main_16(%113, %135) /* ty=Tensor[(1, 32, 28, 28), uint8] */;
%137 = qnn.quantize(%features.7.conv.0.0_weight, meta[relay.Constant][54] /* ty=Tensor[(192), float32] */, 0 /* ty=int32 */, out_dtype="int8", axis=0) /* ty=Tensor[(192, 32, 1, 1), int8] */;
%138 = qnn.conv2d(%136, %137, 66 /* ty=int32 */, 0 /* ty=int32 */, 0.0765793f /* ty=float32 */, meta[relay.Constant][54] /* ty=Tensor[(192), float32] */, padding=[0, 0, 0, 0], channels=192, kernel_size=[1, 1], out_dtype="int32") /* ty=Tensor[(1, 192, 28, 28), int32] */;
%139 = qnn.quantize(%features.7.conv.0.0_bias, meta[relay.Constant][55] /* ty=Tensor[(192), float32] */, 0 /* ty=int32 */, out_dtype="int32", axis=0) /* ty=Tensor[(192), int32] */;
%140 = nn.bias_add(%138, %139) /* ty=Tensor[(1, 192, 28, 28), int32] */;
%141 = qnn.requantize(%140, meta[relay.Constant][56] /* ty=Tensor[(192), float32] */, 0 /* ty=int32 */, 0.0156126f /* ty=float32 */, 0 /* ty=int32 */, axis=1, out_dtype="int32") /* ty=Tensor[(1, 192, 28, 28), int32] */;
%142 = clip(%141, a_min=0f, a_max=255f) /* ty=Tensor[(1, 192, 28, 28), int32] */;
%143 = cast(%142, dtype="uint8") /* ty=Tensor[(1, 192, 28, 28), uint8] */;
%144 = nn.pad(%143, 0f /* ty=float32 */, pad_width=[[0, 0], [0, 0], [1, 1], [1, 1]]) /* ty=Tensor[(1, 192, 30, 30), uint8] */;
%145 = qnn.quantize(%features.7.conv.1.0_weight, meta[relay.Constant][57] /* ty=Tensor[(192), float32] */, 0 /* ty=int32 */, out_dtype="int8", axis=0) /* ty=Tensor[(192, 1, 3, 3), int8] */;
%146 = qnn.conv2d(%144, %145, 0 /* ty=int32 */, 0 /* ty=int32 */, 0.0156126f /* ty=float32 */, meta[relay.Constant][57] /* ty=Tensor[(192), float32] */, strides=[2, 2], padding=[0, 0, 0, 0], groups=192, channels=192, kernel_size=[3, 3], out_dtype="int32") /* ty=Tensor[(1, 192, 14, 14), int32] */;
%147 = qnn.quantize(%features.7.conv.1.0_bias, meta[relay.Constant][58] /* ty=Tensor[(192), float32] */, 0 /* ty=int32 */, out_dtype="int32", axis=0) /* ty=Tensor[(192), int32] */;
%148 = nn.bias_add(%146, %147) /* ty=Tensor[(1, 192, 14, 14), int32] */;
%149 = qnn.requantize(%148, meta[relay.Constant][59] /* ty=Tensor[(192), float32] */, 0 /* ty=int32 */, 0.0258851f /* ty=float32 */, 0 /* ty=int32 */, axis=1, out_dtype="int32") /* ty=Tensor[(1, 192, 14, 14), int32] */;}
def @tvmgen_default_arm_compute_lib_main_0(%arm_compute_lib_0_i0: Tensor[(1, 24, 56, 56), uint8], %arm_compute_lib_0_i1: Tensor[(1, 24, 56, 56), uint8], Inline=1, Compiler="arm_compute_lib", global_symbol="tvmgen_default_arm_compute_lib_main_0", Primitive=1) -> Tensor[(1, 24, 56, 56), uint8] {
qnn.add(%arm_compute_lib_0_i0, %arm_compute_lib_0_i1, 0.044329f /* ty=float32 */, 59 /* ty=int32 */, 0.0576775f /* ty=float32 */, 58 /* ty=int32 */, 0.0764764f /* ty=float32 */, 61 /* ty=int32 */) /* ty=Tensor[(1, 24, 56, 56), uint8] */
}
def @tvmgen_default_arm_compute_lib_main_16(%arm_compute_lib_16_i0: Tensor[(1, 32, 28, 28), uint8], %arm_compute_lib_16_i1: Tensor[(1, 32, 28, 28), uint8], Inline=1, Compiler="arm_compute_lib", global_symbol="tvmgen_default_arm_compute_lib_main_16", Primitive=1) -> Tensor[(1, 32, 28, 28), uint8] {
qnn.add(%arm_compute_lib_16_i0, %arm_compute_lib_16_i1, 0.049797f /* ty=float32 */, 74 /* ty=int32 */, 0.0446687f /* ty=float32 */, 62 /* ty=int32 */, 0.0765793f /* ty=float32 */, 66 /* ty=int32 */) /* ty=Tensor[(1, 32, 28, 28), uint8] */
}
def @tvmgen_default_arm_compute_lib_main_24(%arm_compute_lib_24_i0: Tensor[(1, 64, 14, 14), uint8], %arm_compute_lib_24_i1: Tensor[(1, 64, 14, 14), uint8], Inline=1, Compiler="arm_compute_lib", global_symbol="tvmgen_default_arm_compute_lib_main_24", Primitive=1) -> Tensor[(1, 64, 14, 14), uint8] {
qnn.add(%arm_compute_lib_24_i0, %arm_compute_lib_24_i1, 0.0366653f /* ty=float32 */, 68 /* ty=int32 */, 0.025833f /* ty=float32 */, 69 /* ty=int32 */, 0.0461001f /* ty=float32 */, 70 /* ty=int32 */) /* ty=Tensor[(1, 64, 14, 14), uint8] */
}
def @tvmgen_default_arm_compute_lib_main_32(%arm_compute_lib_32_i0: Tensor[(1, 64, 14, 14), uint8], %arm_compute_lib_32_i1: Tensor[(1, 64, 14, 14), uint8], Inline=1, Compiler="arm_compute_lib", global_symbol="tvmgen_default_arm_compute_lib_main_32", Primitive=1) -> Tensor[(1, 64, 14, 14), uint8] {
qnn.add(%arm_compute_lib_32_i0, %arm_compute_lib_32_i1, 0.0461001f /* ty=float32 */, 70 /* ty=int32 */, 0.0231473f /* ty=float32 */, 68 /* ty=int32 */, 0.0460796f /* ty=float32 */, 67 /* ty=int32 */) /* ty=Tensor[(1, 64, 14, 14), uint8] */
}