Hi
feat_dim = configs['model_args'].get('feat_dim', 80)
if 'feature_args' in configs: # deprecated IO
num_frms = configs['feature_args'].get('num_frms', 200)
else:
num_frms = configs['dataset_args'].get('num_frms', 200)
dummy_input = torch.ones(1, num_frms, feat_dim)
torch.onnx.export(
model, dummy_input,
args.output_model,
do_constant_folding=True,
verbose=False,
opset_version=14,
input_names=['feats'],
output_names=['embs'],
dynamic_axes={'feats': {0: 'B', 1: 'T'}, 'embs': {0: 'B'}})
How should the onnx model generated by the conversion above be compiled with tvm to support dynamic input? Is there any example? Thanks!