Hello all, I have been trying in vein to get a single example run with intel graphics, both under windows and linux. The last time I tried in an ubuntu 18.04, (windows 10 WSL actually) I encountered these errors :
This is the snippet taken from here :
#%% [markdown]
# in the name of Allah the most compassionate the most merciful
# To add a new cell, type '# %%'
# To add a new markdown cell, type '# %% [markdown]'
# %%
# from IPython import get_ipython
# %%
# get_ipython().run_line_magic('matplotlib', 'inline')
# %% [markdown]
#
#
# Quick Start Tutorial for Compiling Deep Learning Models
# ======================================================
# **Author**: `Yao Wang <https://github.com/kevinthesun>`_, `Truman Tian <https://github.com/SiNZeRo>`_
#
# This example shows how to build a neural network with Relay python frontend and
# generates a runtime library for Nvidia GPU with TVM.
# Notice that you need to build TVM with cuda and llvm enabled.
#
#
# %% [markdown]
# Overview for Supported Hardware Backend of TVM
# ----------------------------------------------
# The image below shows hardware backend currently supported by TVM:
#
# 
#
# :align: center
# :scale: 100%
#
# In this tutorial, we'll choose cuda and llvm as target backends.
# To begin with, let's import Relay and TVM.
#
#
# %%
import numpy as np
from tvm import relay
from tvm.relay import testing
import tvm
from tvm.contrib import graph_runtime
# %% [markdown]
# Define Neural Network in Relay
# -----------------------------
# First, let's define a neural network with relay python frontend.
# For simplicity, we'll use pre-defined resnet-18 network in Relay.
# Parameters are initialized with Xavier initializer.
# Relay also supports other model formats such as MXNet, CoreML, ONNX and
# Tensorflow.
#
# In this tutorial, we assume we will do inference on our device
# and the batch size is set to be 1. Input images are RGB color
# images of size 224 * 224. We can call the :any:`tvm.relay.expr.astext()`
# to show the network structure.
#
#
# %%
batch_size = 1
num_class = 1000
image_shape = (3, 224, 224)
data_shape = (batch_size,) + image_shape
out_shape = (batch_size, num_class)
mod, params = relay.testing.resnet.get_workload(
num_layers=18, batch_size=batch_size, image_shape=image_shape)
# set show_meta_data=True if you want to show meta data
print(mod.astext(show_meta_data=False))
# %% [markdown]
# Compilation
# -----------
# Next step is to compile the model using the Relay/TVM pipeline.
# Users can specify the optimization level of the compilation.
# Currently this value can be 0 to 3. The optimization passes include
# operator fusion, pre-computation, layout transformation and so on.
#
# :any:`relay.build_module.build` returns three components: the execution graph in
# json format, the TVM module library of compiled functions specifically
# for this graph on the target hardware, and the parameter blobs of
# the model. During the compilation, Relay does the graph-level
# optimization while TVM does the tensor-level optimization, resulting
# in an optimized runtime module for model serving.
#
# We'll first compile for Nvidia GPU. Behind the scene, `relay.build_module.build`
# first does a number of graph-level optimizations, e.g. pruning, fusing, etc.,
# then registers the operators (i.e. the nodes of the optimized graphs) to
# TVM implementations to generate a `tvm.module`.
# To generate the module library, TVM will first transfer the high level IR
# into the lower intrinsic IR of the specified target backend, which is CUDA
# in this example. Then the machine code will be generated as the module library.
#
#
# %%
opt_level = 3
target = tvm.target.intel_graphics() # model='Intel(R) Iris(R) Pro Graphics 580'
print(f'opt_level :{opt_level}')
print(f'target: {target}')
with relay.build_config(opt_level=opt_level):
graph, lib, params = relay.build_module.build(mod,
target,
params=params)
# %% [markdown]
# Run the generate library
# ------------------------
# Now we can create graph runtime and run the module on Nvidia GPU.
#
#
# %%
# create random input
ctx = tvm.opencl() # for cuda this is gpu()
data = np.random.uniform(-1, 1, size=data_shape).astype("float32")
# create module
module = graph_runtime.create(graph, lib, ctx)
# set input and parameters
module.set_input("data", data)
module.set_input(**params)
# run
module.run()
# get output
out = module.get_output(0, tvm.nd.empty(out_shape)).asnumpy()
# Print first 10 elements of output
print(out.flatten()[0:10])
# %% [markdown]
# Save and Load Compiled Module
# -----------------------------
# We can also save the graph, lib and parameters into files and load them
# back in deploy environment.
#
#
# %%
# save the graph, lib and params into separate files
from tvm.contrib import util
temp = util.tempdir()
path_lib = temp.relpath("deploy_lib.tar")
lib.export_library(path_lib)
with open(temp.relpath("deploy_graph.json"), "w") as fo:
fo.write(graph)
with open(temp.relpath("deploy_param.params"), "wb") as fo:
fo.write(relay.save_param_dict(params))
print(temp.listdir())
# %%
# load the module back.
loaded_json = open(temp.relpath("deploy_graph.json")).read()
loaded_lib = tvm.module.load(path_lib)
loaded_params = bytearray(open(temp.relpath("deploy_param.params"), "rb").read())
input_data = tvm.nd.array(np.random.uniform(size=data_shape).astype("float32"))
module = graph_runtime.create(loaded_json, loaded_lib, ctx)
module.load_params(loaded_params)
module.run(data=input_data)
out_deploy = module.get_output(0).asnumpy()
# Print first 10 elements of output
print(out_deploy.flatten()[0:10])
# check whether the output from deployed module is consistent with original one
tvm.testing.assert_allclose(out_deploy, out, atol=1e-3)
# %%
and these are the errors :
(base) user@F3S-s3user:/mnt/d/Codes/tvm_testbed$ env PTVSD_LAUNCHER_PORT=49216 /home/user/anaconda3/bin/python /home/user/.vscode-server/extensions/ms-python.python-2020.1.58038/pythonFiles/lib/python/new_ptvsd/wheels/ptvsd/launcher /mnt/d/Codes/tvm_testbed/tvm_test1.py
v0.0.4
def @main(%data: Tensor[(1, 3, 224, 224), float32], %bn_data_gamma: Tensor[(3), float32], %bn_data_beta: Tensor[(3), float32], %bn_data_moving_mean: Tensor[(3), float32], %bn_data_moving_var: Tensor[(3), float32], %conv0_weight: Tensor[(64, 3, 7, 7), float32], %bn0_gamma: Tensor[(64), float32], %bn0_beta: Tensor[(64), float32], %bn0_moving_mean: Tensor[(64), float32], %bn0_moving_var: Tensor[(64), float32], %stage1_unit1_bn1_gamma: Tensor[(64), float32], %stage1_unit1_bn1_beta: Tensor[(64), float32], %stage1_unit1_bn1_moving_mean: Tensor[(64), float32], %stage1_unit1_bn1_moving_var: Tensor[(64), float32], %stage1_unit1_conv1_weight: Tensor[(64, 64, 3, 3), float32], %stage1_unit1_bn2_gamma: Tensor[(64), float32], %stage1_unit1_bn2_beta: Tensor[(64), float32], %stage1_unit1_bn2_moving_mean: Tensor[(64), float32], %stage1_unit1_bn2_moving_var: Tensor[(64), float32], %stage1_unit1_conv2_weight: Tensor[(64, 64, 3, 3), float32], %stage1_unit1_sc_weight: Tensor[(64, 64, 1, 1), float32], %stage1_unit2_bn1_gamma: Tensor[(64), float32], %stage1_unit2_bn1_beta: Tensor[(64), float32], %stage1_unit2_bn1_moving_mean: Tensor[(64), float32], %stage1_unit2_bn1_moving_var: Tensor[(64), float32], %stage1_unit2_conv1_weight: Tensor[(64, 64, 3, 3), float32], %stage1_unit2_bn2_gamma: Tensor[(64), float32], %stage1_unit2_bn2_beta: Tensor[(64), float32], %stage1_unit2_bn2_moving_mean: Tensor[(64), float32], %stage1_unit2_bn2_moving_var: Tensor[(64), float32], %stage1_unit2_conv2_weight: Tensor[(64, 64, 3, 3), float32], %stage2_unit1_bn1_gamma: Tensor[(64), float32], %stage2_unit1_bn1_beta: Tensor[(64), float32], %stage2_unit1_bn1_moving_mean: Tensor[(64), float32], %stage2_unit1_bn1_moving_var: Tensor[(64), float32], %stage2_unit1_conv1_weight: Tensor[(128, 64, 3, 3), float32], %stage2_unit1_bn2_gamma: Tensor[(128), float32], %stage2_unit1_bn2_beta: Tensor[(128), float32], %stage2_unit1_bn2_moving_mean: Tensor[(128), float32], %stage2_unit1_bn2_moving_var: Tensor[(128), float32], %stage2_unit1_conv2_weight: Tensor[(128, 128, 3, 3), float32], %stage2_unit1_sc_weight: Tensor[(128, 64, 1, 1), float32], %stage2_unit2_bn1_gamma: Tensor[(128), float32], %stage2_unit2_bn1_beta: Tensor[(128), float32], %stage2_unit2_bn1_moving_mean: Tensor[(128), float32], %stage2_unit2_bn1_moving_var: Tensor[(128), float32], %stage2_unit2_conv1_weight: Tensor[(128, 128, 3, 3), float32], %stage2_unit2_bn2_gamma: Tensor[(128), float32], %stage2_unit2_bn2_beta: Tensor[(128), float32], %stage2_unit2_bn2_moving_mean: Tensor[(128), float32], %stage2_unit2_bn2_moving_var: Tensor[(128), float32], %stage2_unit2_conv2_weight: Tensor[(128, 128, 3, 3), float32], %stage3_unit1_bn1_gamma: Tensor[(128), float32], %stage3_unit1_bn1_beta: Tensor[(128), float32], %stage3_unit1_bn1_moving_mean: Tensor[(128), float32], %stage3_unit1_bn1_moving_var: Tensor[(128), float32], %stage3_unit1_conv1_weight: Tensor[(256, 128, 3, 3), float32], %stage3_unit1_bn2_gamma: Tensor[(256), float32], %stage3_unit1_bn2_beta: Tensor[(256), float32], %stage3_unit1_bn2_moving_mean: Tensor[(256), float32], %stage3_unit1_bn2_moving_var: Tensor[(256), float32], %stage3_unit1_conv2_weight: Tensor[(256, 256, 3, 3), float32], %stage3_unit1_sc_weight: Tensor[(256, 128, 1, 1), float32], %stage3_unit2_bn1_gamma: Tensor[(256), float32], %stage3_unit2_bn1_beta: Tensor[(256), float32], %stage3_unit2_bn1_moving_mean: Tensor[(256), float32], %stage3_unit2_bn1_moving_var: Tensor[(256), float32], %stage3_unit2_conv1_weight: Tensor[(256, 256, 3, 3), float32], %stage3_unit2_bn2_gamma: Tensor[(256), float32], %stage3_unit2_bn2_beta: Tensor[(256), float32], %stage3_unit2_bn2_moving_mean: Tensor[(256), float32], %stage3_unit2_bn2_moving_var: Tensor[(256), float32], %stage3_unit2_conv2_weight: Tensor[(256, 256, 3, 3), float32], %stage4_unit1_bn1_gamma: Tensor[(256), float32], %stage4_unit1_bn1_beta: Tensor[(256), float32], %stage4_unit1_bn1_moving_mean: Tensor[(256), float32], %stage4_unit1_bn1_moving_var: Tensor[(256), float32], %stage4_unit1_conv1_weight: Tensor[(512, 256, 3, 3), float32], %stage4_unit1_bn2_gamma: Tensor[(512), float32], %stage4_unit1_bn2_beta: Tensor[(512), float32], %stage4_unit1_bn2_moving_mean: Tensor[(512), float32], %stage4_unit1_bn2_moving_var: Tensor[(512), float32], %stage4_unit1_conv2_weight: Tensor[(512, 512, 3, 3), float32], %stage4_unit1_sc_weight: Tensor[(512, 256, 1, 1), float32], %stage4_unit2_bn1_gamma: Tensor[(512), float32], %stage4_unit2_bn1_beta: Tensor[(512), float32], %stage4_unit2_bn1_moving_mean: Tensor[(512), float32], %stage4_unit2_bn1_moving_var: Tensor[(512), float32], %stage4_unit2_conv1_weight: Tensor[(512, 512, 3, 3), float32], %stage4_unit2_bn2_gamma: Tensor[(512), float32], %stage4_unit2_bn2_beta: Tensor[(512), float32], %stage4_unit2_bn2_moving_mean: Tensor[(512), float32], %stage4_unit2_bn2_moving_var: Tensor[(512), float32], %stage4_unit2_conv2_weight: Tensor[(512, 512, 3, 3), float32], %bn1_gamma: Tensor[(512), float32], %bn1_beta: Tensor[(512), float32], %bn1_moving_mean: Tensor[(512), float32], %bn1_moving_var: Tensor[(512), float32], %fc1_weight: Tensor[(1000, 512), float32], %fc1_bias: Tensor[(1000), float32]) -> Tensor[(1, 1000), float32] {
%0 = nn.batch_norm(%data, %bn_data_gamma, %bn_data_beta, %bn_data_moving_mean, %bn_data_moving_var, epsilon=2e-05f, scale=False) /* ty=(Tensor[(1, 3, 224, 224), float32], Tensor[(3), float32], Tensor[(3), float32]) */;
%1 = %0.0;
%2 = nn.conv2d(%1, %conv0_weight, strides=[2, 2], padding=[3, 3, 3, 3], channels=64, kernel_size=[7, 7]) /* ty=Tensor[(1, 64, 112, 112), float32] */;
%3 = nn.batch_norm(%2, %bn0_gamma, %bn0_beta, %bn0_moving_mean, %bn0_moving_var, epsilon=2e-05f) /* ty=(Tensor[(1, 64, 112, 112), float32], Tensor[(64), float32], Tensor[(64), float32]) */;
%4 = %3.0;
%5 = nn.relu(%4) /* ty=Tensor[(1, 64, 112, 112), float32] */;
%6 = nn.max_pool2d(%5, pool_size=[3, 3], strides=[2, 2], padding=[1, 1]) /* ty=Tensor[(1, 64, 56, 56), float32] */;
%7 = nn.batch_norm(%6, %stage1_unit1_bn1_gamma, %stage1_unit1_bn1_beta, %stage1_unit1_bn1_moving_mean, %stage1_unit1_bn1_moving_var, epsilon=2e-05f) /* ty=(Tensor[(1, 64, 56, 56), float32], Tensor[(64), float32], Tensor[(64), float32]) */;
%8 = %7.0;
%9 = nn.relu(%8) /* ty=Tensor[(1, 64, 56, 56), float32] */;
%10 = nn.conv2d(%9, %stage1_unit1_conv1_weight, padding=[1, 1, 1, 1], channels=64, kernel_size=[3, 3]) /* ty=Tensor[(1, 64, 56, 56), float32] */;
%11 = nn.batch_norm(%10, %stage1_unit1_bn2_gamma, %stage1_unit1_bn2_beta, %stage1_unit1_bn2_moving_mean, %stage1_unit1_bn2_moving_var, epsilon=2e-05f) /* ty=(Tensor[(1, 64, 56, 56), float32], Tensor[(64), float32], Tensor[(64), float32]) */;
%12 = %11.0;
%13 = nn.relu(%12) /* ty=Tensor[(1, 64, 56, 56), float32] */;
%14 = nn.conv2d(%13, %stage1_unit1_conv2_weight, padding=[1, 1, 1, 1], channels=64, kernel_size=[3, 3]) /* ty=Tensor[(1, 64, 56, 56), float32] */;
%15 = nn.conv2d(%9, %stage1_unit1_sc_weight, padding=[0, 0, 0, 0], channels=64, kernel_size=[1, 1]) /* ty=Tensor[(1, 64, 56, 56), float32] */;
%16 = add(%14, %15) /* ty=Tensor[(1, 64, 56, 56), float32] */;
%17 = nn.batch_norm(%16, %stage1_unit2_bn1_gamma, %stage1_unit2_bn1_beta, %stage1_unit2_bn1_moving_mean, %stage1_unit2_bn1_moving_var, epsilon=2e-05f) /* ty=(Tensor[(1, 64, 56, 56), float32], Tensor[(64), float32], Tensor[(64), float32]) */;
%18 = %17.0;
%19 = nn.relu(%18) /* ty=Tensor[(1, 64, 56, 56), float32] */;
%20 = nn.conv2d(%19, %stage1_unit2_conv1_weight, padding=[1, 1, 1, 1], channels=64, kernel_size=[3, 3]) /* ty=Tensor[(1, 64, 56, 56), float32] */;
%21 = nn.batch_norm(%20, %stage1_unit2_bn2_gamma, %stage1_unit2_bn2_beta, %stage1_unit2_bn2_moving_mean, %stage1_unit2_bn2_moving_var, epsilon=2e-05f) /* ty=(Tensor[(1, 64, 56, 56), float32], Tensor[(64), float32], Tensor[(64), float32]) */;
%22 = %21.0;
%23 = nn.relu(%22) /* ty=Tensor[(1, 64, 56, 56), float32] */;
%24 = nn.conv2d(%23, %stage1_unit2_conv2_weight, padding=[1, 1, 1, 1], channels=64, kernel_size=[3, 3]) /* ty=Tensor[(1, 64, 56, 56), float32] */;
%25 = add(%24, %16) /* ty=Tensor[(1, 64, 56, 56), float32] */;
%26 = nn.batch_norm(%25, %stage2_unit1_bn1_gamma, %stage2_unit1_bn1_beta, %stage2_unit1_bn1_moving_mean, %stage2_unit1_bn1_moving_var, epsilon=2e-05f) /* ty=(Tensor[(1, 64, 56, 56), float32], Tensor[(64), float32], Tensor[(64), float32]) */;
%27 = %26.0;
%28 = nn.relu(%27) /* ty=Tensor[(1, 64, 56, 56), float32] */;
%29 = nn.conv2d(%28, %stage2_unit1_conv1_weight, strides=[2, 2], padding=[1, 1, 1, 1], channels=128, kernel_size=[3, 3]) /* ty=Tensor[(1, 128, 28, 28), float32] */;
%30 = nn.batch_norm(%29, %stage2_unit1_bn2_gamma, %stage2_unit1_bn2_beta, %stage2_unit1_bn2_moving_mean, %stage2_unit1_bn2_moving_var, epsilon=2e-05f) /* ty=(Tensor[(1, 128, 28, 28), float32], Tensor[(128), float32], Tensor[(128), float32]) */;
%31 = %30.0;
%32 = nn.relu(%31) /* ty=Tensor[(1, 128, 28, 28), float32] */;
%33 = nn.conv2d(%32, %stage2_unit1_conv2_weight, padding=[1, 1, 1, 1], channels=128, kernel_size=[3, 3]) /* ty=Tensor[(1, 128, 28, 28), float32] */;
%34 = nn.conv2d(%28, %stage2_unit1_sc_weight, strides=[2, 2], padding=[0, 0, 0, 0], channels=128, kernel_size=[1, 1]) /* ty=Tensor[(1, 128, 28, 28), float32] */;
%35 = add(%33, %34) /* ty=Tensor[(1, 128, 28, 28), float32] */;
%36 = nn.batch_norm(%35, %stage2_unit2_bn1_gamma, %stage2_unit2_bn1_beta, %stage2_unit2_bn1_moving_mean, %stage2_unit2_bn1_moving_var, epsilon=2e-05f) /* ty=(Tensor[(1, 128, 28, 28), float32], Tensor[(128), float32], Tensor[(128), float32]) */;
%37 = %36.0;
%38 = nn.relu(%37) /* ty=Tensor[(1, 128, 28, 28), float32] */;
%39 = nn.conv2d(%38, %stage2_unit2_conv1_weight, padding=[1, 1, 1, 1], channels=128, kernel_size=[3, 3]) /* ty=Tensor[(1, 128, 28, 28), float32] */;
%40 = nn.batch_norm(%39, %stage2_unit2_bn2_gamma, %stage2_unit2_bn2_beta, %stage2_unit2_bn2_moving_mean, %stage2_unit2_bn2_moving_var, epsilon=2e-05f) /* ty=(Tensor[(1, 128, 28, 28), float32], Tensor[(128), float32], Tensor[(128), float32]) */;
%41 = %40.0;
%42 = nn.relu(%41) /* ty=Tensor[(1, 128, 28, 28), float32] */;
%43 = nn.conv2d(%42, %stage2_unit2_conv2_weight, padding=[1, 1, 1, 1], channels=128, kernel_size=[3, 3]) /* ty=Tensor[(1, 128, 28, 28), float32] */;
%44 = add(%43, %35) /* ty=Tensor[(1, 128, 28, 28), float32] */;
%45 = nn.batch_norm(%44, %stage3_unit1_bn1_gamma, %stage3_unit1_bn1_beta, %stage3_unit1_bn1_moving_mean, %stage3_unit1_bn1_moving_var, epsilon=2e-05f) /* ty=(Tensor[(1, 128, 28, 28), float32], Tensor[(128), float32], Tensor[(128), float32]) */;
%46 = %45.0;
%47 = nn.relu(%46) /* ty=Tensor[(1, 128, 28, 28), float32] */;
%48 = nn.conv2d(%47, %stage3_unit1_conv1_weight, strides=[2, 2], padding=[1, 1, 1, 1], channels=256, kernel_size=[3, 3]) /* ty=Tensor[(1, 256, 14, 14), float32] */;
%49 = nn.batch_norm(%48, %stage3_unit1_bn2_gamma, %stage3_unit1_bn2_beta, %stage3_unit1_bn2_moving_mean, %stage3_unit1_bn2_moving_var, epsilon=2e-05f) /* ty=(Tensor[(1, 256, 14, 14), float32], Tensor[(256), float32], Tensor[(256), float32]) */;
%50 = %49.0;
%51 = nn.relu(%50) /* ty=Tensor[(1, 256, 14, 14), float32] */;
%52 = nn.conv2d(%51, %stage3_unit1_conv2_weight, padding=[1, 1, 1, 1], channels=256, kernel_size=[3, 3]) /* ty=Tensor[(1, 256, 14, 14), float32] */;
%53 = nn.conv2d(%47, %stage3_unit1_sc_weight, strides=[2, 2], padding=[0, 0, 0, 0], channels=256, kernel_size=[1, 1]) /* ty=Tensor[(1, 256, 14, 14), float32] */;
%54 = add(%52, %53) /* ty=Tensor[(1, 256, 14, 14), float32] */;
%55 = nn.batch_norm(%54, %stage3_unit2_bn1_gamma, %stage3_unit2_bn1_beta, %stage3_unit2_bn1_moving_mean, %stage3_unit2_bn1_moving_var, epsilon=2e-05f) /* ty=(Tensor[(1, 256, 14, 14), float32], Tensor[(256), float32], Tensor[(256), float32]) */;
%56 = %55.0;
%57 = nn.relu(%56) /* ty=Tensor[(1, 256, 14, 14), float32] */;
%58 = nn.conv2d(%57, %stage3_unit2_conv1_weight, padding=[1, 1, 1, 1], channels=256, kernel_size=[3, 3]) /* ty=Tensor[(1, 256, 14, 14), float32] */;
%59 = nn.batch_norm(%58, %stage3_unit2_bn2_gamma, %stage3_unit2_bn2_beta, %stage3_unit2_bn2_moving_mean, %stage3_unit2_bn2_moving_var, epsilon=2e-05f) /* ty=(Tensor[(1, 256, 14, 14), float32], Tensor[(256), float32], Tensor[(256), float32]) */;
%60 = %59.0;
%61 = nn.relu(%60) /* ty=Tensor[(1, 256, 14, 14), float32] */;
%62 = nn.conv2d(%61, %stage3_unit2_conv2_weight, padding=[1, 1, 1, 1], channels=256, kernel_size=[3, 3]) /* ty=Tensor[(1, 256, 14, 14), float32] */;
%63 = add(%62, %54) /* ty=Tensor[(1, 256, 14, 14), float32] */;
%64 = nn.batch_norm(%63, %stage4_unit1_bn1_gamma, %stage4_unit1_bn1_beta, %stage4_unit1_bn1_moving_mean, %stage4_unit1_bn1_moving_var, epsilon=2e-05f) /* ty=(Tensor[(1, 256, 14, 14), float32], Tensor[(256), float32], Tensor[(256), float32]) */;
%65 = %64.0;
%66 = nn.relu(%65) /* ty=Tensor[(1, 256, 14, 14), float32] */;
%67 = nn.conv2d(%66, %stage4_unit1_conv1_weight, strides=[2, 2], padding=[1, 1, 1, 1], channels=512, kernel_size=[3, 3]) /* ty=Tensor[(1, 512, 7, 7), float32] */;
%68 = nn.batch_norm(%67, %stage4_unit1_bn2_gamma, %stage4_unit1_bn2_beta, %stage4_unit1_bn2_moving_mean, %stage4_unit1_bn2_moving_var, epsilon=2e-05f) /* ty=(Tensor[(1, 512, 7, 7), float32], Tensor[(512), float32], Tensor[(512), float32]) */;
%69 = %68.0;
%70 = nn.relu(%69) /* ty=Tensor[(1, 512, 7, 7), float32] */;
%71 = nn.conv2d(%70, %stage4_unit1_conv2_weight, padding=[1, 1, 1, 1], channels=512, kernel_size=[3, 3]) /* ty=Tensor[(1, 512, 7, 7), float32] */;
%72 = nn.conv2d(%66, %stage4_unit1_sc_weight, strides=[2, 2], padding=[0, 0, 0, 0], channels=512, kernel_size=[1, 1]) /* ty=Tensor[(1, 512, 7, 7), float32] */;
%73 = add(%71, %72) /* ty=Tensor[(1, 512, 7, 7), float32] */;
%74 = nn.batch_norm(%73, %stage4_unit2_bn1_gamma, %stage4_unit2_bn1_beta, %stage4_unit2_bn1_moving_mean, %stage4_unit2_bn1_moving_var, epsilon=2e-05f) /* ty=(Tensor[(1, 512, 7, 7), float32], Tensor[(512), float32], Tensor[(512), float32]) */;
%75 = %74.0;
%76 = nn.relu(%75) /* ty=Tensor[(1, 512, 7, 7), float32] */;
%77 = nn.conv2d(%76, %stage4_unit2_conv1_weight, padding=[1, 1, 1, 1], channels=512, kernel_size=[3, 3]) /* ty=Tensor[(1, 512, 7, 7), float32] */;
%78 = nn.batch_norm(%77, %stage4_unit2_bn2_gamma, %stage4_unit2_bn2_beta, %stage4_unit2_bn2_moving_mean, %stage4_unit2_bn2_moving_var, epsilon=2e-05f) /* ty=(Tensor[(1, 512, 7, 7), float32], Tensor[(512), float32], Tensor[(512), float32]) */;
%79 = %78.0;
%80 = nn.relu(%79) /* ty=Tensor[(1, 512, 7, 7), float32] */;
%81 = nn.conv2d(%80, %stage4_unit2_conv2_weight, padding=[1, 1, 1, 1], channels=512, kernel_size=[3, 3]) /* ty=Tensor[(1, 512, 7, 7), float32] */;
%82 = add(%81, %73) /* ty=Tensor[(1, 512, 7, 7), float32] */;
%83 = nn.batch_norm(%82, %bn1_gamma, %bn1_beta, %bn1_moving_mean, %bn1_moving_var, epsilon=2e-05f) /* ty=(Tensor[(1, 512, 7, 7), float32], Tensor[(512), float32], Tensor[(512), float32]) */;
%84 = %83.0;
%85 = nn.relu(%84) /* ty=Tensor[(1, 512, 7, 7), float32] */;
%86 = nn.global_avg_pool2d(%85) /* ty=Tensor[(1, 512, 1, 1), float32] */;
%87 = nn.batch_flatten(%86) /* ty=Tensor[(1, 512), float32] */;
%88 = nn.dense(%87, %fc1_weight, units=1000) /* ty=Tensor[(1, 1000), float32] */;
%89 = nn.bias_add(%88, %fc1_bias, axis=-1) /* ty=Tensor[(1, 1000), float32] */;
nn.softmax(%89) /* ty=Tensor[(1, 1000), float32] */
}
opt_level :3
target: opencl -device=intel_graphics -model=unknown
...100%, 0.04 MB, 27 KB/s, 1 seconds passed
Cannot find config for target=opencl -device=intel_graphics -model=unknown, workload=('conv2d', (1, 3, 224, 224, 'float32'), (64, 3, 7, 7, 'float32'), (2, 2), (3, 3, 3, 3), (1, 1), 'NCHW', 'float32'). A fallback configuration is used, which may bring great performance regression.
Traceback (most recent call last):
File "/mnt/d/Codes/tvm_testbed/tvm_test1.py", line 109, in <module>
params=params)
File "/home/user/.local/lib/python3.7/site-packages/tvm-0.7.dev0-py3.7-linux-x86_64.egg/tvm/relay/build_module.py", line 248, in build
graph_json, mod, params = bld_mod.build(func, target, target_host, params)
File "/home/user/.local/lib/python3.7/site-packages/tvm-0.7.dev0-py3.7-linux-x86_64.egg/tvm/relay/build_module.py", line 118, in build
self._build(func, target, target_host)
File "tvm/_ffi/_cython/./packed_func.pxi", line 308, in tvm._ffi._cy3.core.PackedFuncBase.__call__
File "tvm/_ffi/_cython/./packed_func.pxi", line 243, in tvm._ffi._cy3.core.FuncCall
File "tvm/_ffi/_cython/./packed_func.pxi", line 232, in tvm._ffi._cy3.core.FuncCall3
File "tvm/_ffi/_cython/./base.pxi", line 159, in tvm._ffi._cy3.core.CALL
tvm._ffi.base.TVMError: Traceback (most recent call last):
[bt] (8) /home/user/.local/lib/python3.7/site-packages/tvm-0.7.dev0-py3.7-linux-x86_64.egg/tvm/libtvm.so(tvm::relay::ForwardRewriter::VisitExpr_(tvm::relay::CallNode const*)+0x6ca) [0x7f339e2a6bba]
[bt] (7) /home/user/.local/lib/python3.7/site-packages/tvm-0.7.dev0-py3.7-linux-x86_64.egg/tvm/libtvm.so(tvm::relay::ExprMutator::VisitExpr(tvm::RelayExpr const&)+0x9e) [0x7f339e3fbbce]
[bt] (6) /home/user/.local/lib/python3.7/site-packages/tvm-0.7.dev0-py3.7-linux-x86_64.egg/tvm/libtvm.so(tvm::relay::ExprFunctor<tvm::RelayExpr (tvm::RelayExpr const&)>::VisitExpr(tvm::RelayExpr const&)+0x9a) [0x7f339e2a2e7a]
[bt] (5) /home/user/.local/lib/python3.7/site-packages/tvm-0.7.dev0-py3.7-linux-x86_64.egg/tvm/libtvm.so(tvm::relay::ExprFunctor<tvm::RelayExpr (tvm::RelayExpr const&)>::InitVTable()::{lambda(tvm::runtime::ObjectRef const&, tvm::relay::ExprFunctor<tvm::RelayExpr (tvm::RelayExpr const&)>*)#6}::_FUN(tvm::runtime::ObjectRef const&, tvm::relay::ExprFunctor<tvm::RelayExpr (tvm::RelayExpr const&)>*)+0x27) [0x7f339e2a0ec7]
[bt] (4) /home/user/.local/lib/python3.7/site-packages/tvm-0.7.dev0-py3.7-linux-x86_64.egg/tvm/libtvm.so(tvm::relay::ForwardRewriter::VisitExpr_(tvm::relay::CallNode const*)+0xa05) [0x7f339e2a6ef5]
[bt] (3) /home/user/.local/lib/python3.7/site-packages/tvm-0.7.dev0-py3.7-linux-x86_64.egg/tvm/libtvm.so(std::_Function_handler<void (tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*), tvm::runtime::TypedPackedFunc<tvm::RelayExpr (tvm::relay::Call const&, tvm::Array<tvm::RelayExpr, void> const&, tvm::runtime::ObjectRef const&)>::AssignTypedLambda<tvm::RelayExpr (*)(tvm::relay::Call const&, tvm::Array<tvm::RelayExpr, void> const&, tvm::runtime::ObjectRef const&)>(tvm::RelayExpr (*)(tvm::relay::Call const&, tvm::Array<tvm::RelayExpr, void> const&, tvm::runtime::ObjectRef const&))::{lambda(tvm::runtime::TVMArgs const&, tvm::runtime::TVMRetValue*)#1}>::_M_invoke(std::_Any_data const&, tvm::runtime::TVMArgs&&, tvm::runtime::TVMRetValue*&&)+0xb0) [0x7f339e2436b0]
[bt] (2) /home/user/.local/lib/python3.7/site-packages/tvm-0.7.dev0-py3.7-linux-x86_64.egg/tvm/libtvm.so(tvm::RelayExpr tvm::relay::LayoutRewriter<tvm::relay::alter_op_layout::AlterTransformMemorizer>(tvm::relay::Call const&, tvm::Array<tvm::RelayExpr, void> const&, tvm::runtime::ObjectRef const&)+0xbba) [0x7f339e24155a]
[bt] (1) /home/user/.local/lib/python3.7/site-packages/tvm-0.7.dev0-py3.7-linux-x86_64.egg/tvm/libtvm.so(tvm::relay::alter_op_layout::AlterTransformMemorizer::CallWithNewLayouts(tvm::relay::Call const&, std::vector<tvm::RelayExpr, std::allocator<tvm::RelayExpr> > const&)+0x5cb) [0x7f339e23fbbb]
[bt] (0) /home/user/.local/lib/python3.7/site-packages/tvm-0.7.dev0-py3.7-linux-x86_64.egg/tvm/libtvm.so(+0x134815b) [0x7f339e4c015b]
File "tvm/_ffi/_cython/./packed_func.pxi", line 54, in tvm._ffi._cy3.core.tvm_callback
File "/home/user/.local/lib/python3.7/site-packages/tvm-0.7.dev0-py3.7-linux-x86_64.egg/tvm/relay/op/nn/_nn.py", line 270, in alter_op_layout_conv2d
return topi.nn.conv2d_alter_layout(attrs, inputs, tinfos, op)
File "</home/user/anaconda3/lib/python3.7/site-packages/decorator.py:decorator-gen-37>", line 2, in conv2d_alter_layout
File "/home/user/.local/lib/python3.7/site-packages/tvm-0.7.dev0-py3.7-linux-x86_64.egg/tvm/target.py", line 381, in dispatch_func
return dispatch_dict[k](*args, **kwargs)
File "/home/user/.local/lib/python3.7/site-packages/topi-0.7.dev0-py3.7.egg/topi/intel_graphics/conv2d.py", line 238, in _alter_conv2d_layout
ic_bn = cfg["tile_ic"].val if hasattr(cfg["tile_ic"], "val") else cfg["tile_ic"].size[-1]
File "/home/user/.local/lib/python3.7/site-packages/tvm-0.7.dev0-py3.7-linux-x86_64.egg/tvm/autotvm/task/space.py", line 808, in __getitem__
return self._entity_map[name]
KeyError: 'tile_ic'
if Iβm not mistaken, this is along with the findings of this thread, but Iβm not sure as the last post in that thread is several months old without a proper answer!
Iβd greatly appreciate if someone could shed some light on this. Thank you all very much in advance