Why autoscheduler can't operate on cuda but can successful operate when target is llvm

I used the same code to run. The first time I use llvm to autotune, it runs perfectly.

target = tvm.target.Target("llvm -mcpu=core-avx2")

when I switch to cuda, it suddenly break down when run this code. tuner.tune(tune_option)

 target = tvm.target.cuda()

when using target="cuda",the error indicates “Target has been reduced to 12 due to too many failures or duplications”

Generate Sketches		#s: 2
Sample Iter: 5	#Pop: 10	#Target: 50	fail_ct: 10230	Time elapsed: 2.17
#Target has been reduced to 25 due to too many failures or duplications
Sample Iter: 10	#Pop: 10	#Target: 25	fail_ct: 20470	Time elapsed: 4.33
#Target has been reduced to 12 due to too many failures or duplications
Sample Iter: 15	#Pop: 10	#Target: 12	fail_ct: 30710	Time elapsed: 6.50
#Target has been reduced to 6 due to too many failures or duplications
Sample Initial Population	#s: 10	fail_ct: 32758	Time elapsed: 6.95
GA Iter: 0	Max score: 0.8634	Min score: 0.0405	#Pop: 10	#M+: 0	#M-: 0
GA Iter: 4	Max score: 0.8634	Min score: 0.0405	#Pop: 10	#M+: 588	#M-: 5381
EvolutionarySearch		#s: 10	Time elapsed: 1.50
----------------------------------------------------------------------
------------------------------  [ Measure ]
----------------------------------------------------------------------
Get 10 programs to measure:
..........*E

when using target = tvm.target.cuda(),it raises error when measuring programs

Generate Sketches               #s: 1
Sample Initial Population       #s: 145 fail_ct: 1903   Time elapsed: 1.78
GA Iter: 0      Max score: 0.9943       Min score: 0.8152       #Pop: 28        #M+: 0  #M-: 0
GA Iter: 4      Max score: 0.9998       Min score: 0.9972       #Pop: 28        #M+: 1392       #M-: 0
EvolutionarySearch              #s: 28  Time elapsed: 15.88
----------------------------------------------------------------------
------------------------------  [ Measure ]
----------------------------------------------------------------------
Get 14 programs to measure:
..............*ETraceback (most recent call last):
  File "/home/elle/anaconda3/envs/Lu1/lib/python3.9/runpy.py", line 197, in _run_module_as_main
    return _run_code(code, main_globals, None,
  File "/home/elle/anaconda3/envs/Lu1/lib/python3.9/runpy.py", line 87, in _run_code
    exec(code, run_globals)
  File "/home/elle/.vscode/extensions/ms-python.python-2021.12.1559732655/pythonFiles/lib/python/debugpy/__main__.py", line 45, in <module>
    cli.main()
  File "/home/elle/.vscode/extensions/ms-python.python-2021.12.1559732655/pythonFiles/lib/python/debugpy/../debugpy/server/cli.py", line 444, in main
    run()
  File "/home/elle/.vscode/extensions/ms-python.python-2021.12.1559732655/pythonFiles/lib/python/debugpy/../debugpy/server/cli.py", line 285, in run_file
    runpy.run_path(target_as_str, run_name=compat.force_str("__main__"))
  File "/home/elle/anaconda3/envs/Lu1/lib/python3.9/runpy.py", line 268, in run_path
    return _run_module_code(code, init_globals, run_name,
  File "/home/elle/anaconda3/envs/Lu1/lib/python3.9/runpy.py", line 97, in _run_module_code
    _run_code(code, mod_globals, init_globals,
  File "/home/elle/anaconda3/envs/Lu1/lib/python3.9/runpy.py", line 87, in _run_code
    exec(code, run_globals)
  File "/home/elle/bing/proj/code/tvm1-Image-Adaptive-3DLUT/use-LUT-model-and-TVM-to-tune.py", line 203, in <module>
    run_tuning()
  File "/home/elle/bing/proj/code/tvm1-Image-Adaptive-3DLUT/use-LUT-model-and-TVM-to-tune.py", line 201, in run_tuning
    tuner.tune(tune_option)
  File "/home/elle/bing/proj/tvm/python/tvm/auto_scheduler/task_scheduler.py", line 360, in tune
    self._tune_task(idx)
  File "/home/elle/bing/proj/tvm/python/tvm/auto_scheduler/task_scheduler.py", line 455, in _tune_task
    measure_inputs, measure_results = self.search_policies[task_idx].continue_search_one_round(
  File "/home/elle/bing/proj/tvm/python/tvm/auto_scheduler/search_policy.py", line 119, in continue_search_one_round
    return _ffi_api.SearchPolicyContinueSearchOneRound(self, num_measure, measurer)
  File "/home/elle/bing/proj/tvm/python/tvm/_ffi/_ctypes/packed_func.py", line 237, in __call__
    raise get_last_ffi_error()
ValueError: Traceback (most recent call last):
  [bt] (7) /home/elle/bing/proj/tvm/build/libtvm.so(TVMFuncCall+0x57) [0x7f0a9467a457]
  [bt] (6) /home/elle/bing/proj/tvm/build/libtvm.so(+0x2f39b92) [0x7f0a93132b92]
  [bt] (5) /home/elle/bing/proj/tvm/build/libtvm.so(tvm::auto_scheduler::SketchPolicyNode::ContinueSearchOneRound(int, tvm::auto_scheduler::ProgramMeasurer)+0x3a0) [0x7f0a93141ab0]
  [bt] (4) /home/elle/bing/proj/tvm/build/libtvm.so(tvm::auto_scheduler::ProgramMeasurerNode::Measure(tvm::auto_scheduler::SearchTask const&, tvm::auto_scheduler::SearchPolicy const&, tvm::runtime::Array<tvm::auto_scheduler::MeasureInput, void> const&, int)+0x483) [0x7f0a931037d3]
  [bt] (3) /home/elle/bing/proj/tvm/build/libtvm.so(tvm::auto_scheduler::ProgramMeasurerNode::SilentMeasure(tvm::auto_scheduler::SearchTask const&, tvm::runtime::Array<tvm::auto_scheduler::MeasureInput, void> const&, tvm::runtime::Array<tvm::auto_scheduler::MeasureResult, void>*)+0x101) [0x7f0a93101d21]
  [bt] (2) /home/elle/bing/proj/tvm/build/libtvm.so(tvm::auto_scheduler::LocalRunnerNode::Run(tvm::runtime::Array<tvm::auto_scheduler::MeasureInput, void> const&, tvm::runtime::Array<tvm::auto_scheduler::BuildResult, void> const&, int)+0x19a) [0x7f0a93102eaa]
  [bt] (1) /home/elle/bing/proj/tvm/build/libtvm.so(+0x2be9122) [0x7f0a92de2122]
  [bt] (0) /home/elle/bing/proj/tvm/build/libtvm.so(tvm::runtime::Backtrace[abi:cxx11]()+0x2c) [0x7f0a9469833c]
  File "/home/elle/bing/proj/tvm/python/tvm/_ffi/_ctypes/packed_func.py", line 81, in cfun
    rv = local_pyfunc(*pyargs)
  File "/home/elle/bing/proj/tvm/python/tvm/auto_scheduler/measure.py", line 1026, in local_run
    res = call_func_with_timeout(
  File "/home/elle/bing/proj/tvm/python/tvm/auto_scheduler/utils.py", line 293, in call_func_with_timeout
    worker.send(func, args, kwargs, timeout)
  File "/home/elle/bing/proj/tvm/python/tvm/contrib/popen_pool.py", line 244, in send
    self._writer.write(struct.pack("<i", len(data)))
ValueError: write to closed file