I add ToMixedPrecision in tune_network_mali.py to tune a fp32 network in fp16. But error occured on resnet-50:
File “/home/tvm/tvm/python/tvm/auto_scheduler/measure.py”, line 1150,
in _rpc_run func.entry_func(*loc_args)
File “/home/tvm/tvm/python/tvm/_ffi/_ctypes/packed_func.py”, line 237, in call rai
…
execution of TVM.
For more information, please see: Handle TVM Errors — tvm 0.11.dev0 documentation
Check failed: ret == 0 (-1 vs. 0) :
TVMError: Cannot handle float16 as device function argument , all_cost:2.11, Tstamp:1669419374.61)
Besides that, the layer named vm_mod_fused_nn_contrib_conv2d_winograd_without_weight_transform_add_nn_relu_1 has no performance static. In the schedule table, it’s like
| 5 | vm_mod_fused_nn_contrib_conv2d_winograd_without_weight_transform_add_nn_relu_1 | - | - | 64 |
| 6 | vm_mod_fused_nn_contrib_conv2d_winograd_without_weight_transform_add_nn_relu_2 | - | - | 64 |
| 7 | vm_mod_fused_nn_conv2d_add_nn_relu_7 | 0.825 | 62.32 | 64 |
As you can see, the 7th layer conv2d has it’s Laytency and Speed data, but not for 5th and 6th layer.