# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""
Compile Tensorflow Models
=========================
This article is an introductory tutorial to deploy tensorflow models with TVM.
For us to begin with, tensorflow python module is required to be installed.
Please refer to https://www.tensorflow.org/install
"""
# tvm, relay
import tvm
from tvm import relay
# os and numpy
import numpy as np
# Tensorflow imports
import tensorflow as tf
try:
tf_compat_v1 = tf.compat.v1
except ImportError:
tf_compat_v1 = tf
# Tensorflow utility functions
import tvm.relay.testing.tf as tf_testing
# Base location for model related files.
#repo_base = 'https://github.com/dmlc/web-data/raw/master/tensorflow/models/InceptionV1/'
data_dir = "./inception/"
# Test image
img_name = 'elephant-299.jpg'
#image_url = os.path.join(repo_base, img_name)
######################################################################
# Tutorials
# ---------
# Please refer docs/frontend/tensorflow.md for more details for various models
# from tensorflow.
model_name = 'classify_image_graph_def-with_shapes.pb'
#model_url = os.path.join(repo_base, model_name)
# Image label map
map_proto = 'imagenet_2012_challenge_label_map_proto.pbtxt'
#map_proto_url = os.path.join(repo_base, map_proto)
# Human readable text for labels
label_map = 'imagenet_synset_to_human_label_map.txt'
#label_map_url = os.path.join(repo_base, label_map)
# Target settings
# Use these commented settings to build for cuda.
#target = 'cuda'
#target_host = 'llvm'
#layout = "NCHW"
#ctx = tvm.gpu(0)
target = 'llvm'
target_host = 'llvm'
layout = None
ctx = tvm.cpu(0)
######################################################################
# Download required files
# -----------------------
# Download files listed above.
from tvm.contrib.download import download_testdata
# img_path = download_testdata(image_url, img_name, module='data')
# model_path = download_testdata(model_url, model_name, module=['tf', 'InceptionV1'])
# map_proto_path = download_testdata(map_proto_url, map_proto, module='data')
# label_path = download_testdata(label_map_url, label_map, module='data')
img_path = data_dir+img_name
model_path = data_dir + model_name
map_proto_path = data_dir + map_proto
label_path = data_dir + label_map
######################################################################
# Import model
# ------------
# Creates tensorflow graph definition from protobuf file.
with tf_compat_v1.gfile.GFile(model_path, 'rb') as f:
graph_def = tf_compat_v1.GraphDef()
graph_def.ParseFromString(f.read())
graph = tf.import_graph_def(graph_def, name='')
# Call the utility to import the graph definition into default graph.
graph_def = tf_testing.ProcessGraphDefParam(graph_def)
# Add shapes to the graph.
with tf_compat_v1.Session() as sess:
graph_def = tf_testing.AddShapesToGraphDef(sess, 'softmax')
######################################################################
# Decode image
# ------------
# .. note::
#
# tensorflow frontend import doesn't support preprocessing ops like JpegDecode.
# JpegDecode is bypassed (just return source node).
# Hence we supply decoded frame to TVM instead.
#
from PIL import Image
image = Image.open(img_path).resize((299, 299))
x = np.array(image)
######################################################################
# Import the graph to Relay
# -------------------------
# Import tensorflow graph definition to relay frontend.
#
# Results:
# sym: relay expr for given tensorflow protobuf.
# params: params converted from tensorflow params (tensor protobuf).
shape_dict = {'DecodeJpeg/contents': x.shape}
dtype_dict = {'DecodeJpeg/contents': 'uint8'}
mod, params = relay.frontend.from_tensorflow(graph_def,
layout=layout,
shape=shape_dict)
print(mod)
from tvm.relay import transform
mod = transform.AnnotateTarget("dnnl")(mod)
print("**********annotated mod:********\n", mod)
#mod = transform.MergeCompilerRegions()(mod)
#print("**********merged mod:********\n", mod)
mod = transform.PartitionGraph()(mod)
print("Tensorflow protobuf imported to relay frontend.")
######################################################################
# Relay Build
# -----------
# Compile the graph to llvm target with given input specification.
#
# Results:
# graph: Final graph after compilation.
# params: final params after compilation.
# lib: target library which can be deployed on target with TVM runtime.
with relay.build_config(opt_level=4):
graph, lib, params = relay.build(mod,
target=target,
target_host=target_host,
params=params)
######################################################################
# Execute the portable graph on TVM
# ---------------------------------
# Now we can try deploying the compiled model on target.
#from tvm.contrib import graph_runtime
from tvm.contrib.debugger import debug_runtime as graph_runtime
dtype = 'uint8'
m = graph_runtime.create(graph, lib, ctx)
# set inputs
m.set_input('DecodeJpeg/contents', tvm.nd.array(x.astype(dtype)))
m.set_input(**params)
# execute
m.run()
# get outputs
tvm_output = m.get_output(0, tvm.nd.empty(((1, 1008)), 'float32'))
######################################################################
# Process the output
# ------------------
# Process the model output to human readable text for InceptionV1.
predictions = tvm_output.asnumpy()
predictions = np.squeeze(predictions)
# Creates node ID --> English string lookup.
node_lookup = tf_testing.NodeLookup(label_lookup_path=map_proto_path,
uid_lookup_path=label_path)
# Print top 5 predictions from TVM output.
top_k = predictions.argsort()[-5:][::-1]
for node_id in top_k:
human_string = node_lookup.id_to_string(node_id)
score = predictions[node_id]
print('%s (score = %.5f)' % (human_string, score))
The reason is that you imported a model from TensorFlow. When converting a model from other frameworks, it may preserve many unused functions in the model and this will cause failures. Add one line in your code could resolve this issue:
from tvm.relay import transform
mod = transform.RemoveUnusedFunctions()(mod)
mod = transform.AnnotateTarget("dnnl")(mod)
After that, your program will go through all BYOC passes but failed when building a module. It seems like the limitation to the current DNNL codegen, because it’s not supposed to be used in practice but just for illustration purpose. I’ll take another look later and make a quick fix if the issue it straightforward.