how do i determine the mapping to parameters for each kernel i.e., how does the main program with model inputs invoke each of these kernels ?
Hi @gana! I’ll be glad to help you. But could you please describe, what you are trying to do and what are you planning to get as a result? I got that you want to match TVM tensors with OpenCL kernels parameters, am I right?
hi @echuraev,
i have an input onnx model (matrix multiply) with inputs T1 and T2, Output O1
TVM generates 2 OpenCL kernels
Transpose (X, Y)
Dense (U, V, W)
i am unable to obtain a “main” host program that calls these kernels, to obtain the mapping of say T1 to X, Y to V, and output U to O1
i tried to generate C code to see if i can get this mapping, but again no “main” function is available
there is a “main” in LLVM IR and that has two kernel definitions but their parameters are many and hard to trace via “hand data-flow analysis” …
any advice, help appreciated
thanks !
Sorry, for the delay in response.
You are not able to get a “main” host program. From the OpenCL runtime, you can get only OpenCL programs. But the host part you should write by yourself if you want to do any experiments. You can add prints to OpenCL runtime and get the OpenCL kernels and also print the buffers or textures which were allocated. In this case, you’ll be able to create the same surfaces in your code.
You can find some examples in this application: qualcomm/apps/OpenCLCppRunner at master · Deelvin/qualcomm · GitHub
In the implementations
directory, there are several examples of host code for OpenCL kernels from TVM.
How did you get the work group sizings from tvm for the opencl target on Adreno GPU?
I saw your samples here: qualcomm/apps/OpenCLCppRunner at master · Deelvin/qualcomm · GitHub
I see that you obtained work group sizings for a tvm generated kernel here: Deelvin tvm generated kernel example
I am trying to do the same thing, to compare tvm kernel performance to my own kernel performance.
Here’s how I get the kernel source complete python script to generate tvm conv kernel
import os
import numpy as np
import tvm
from tvm import relay, autotvm
import tvm.relay.testing
from tvm.autotvm.tuner import XGBTuner, GATuner, RandomTuner, GridSearchTuner
from tvm.contrib.utils import tempdir
import tvm.contrib.graph_executor as runtime
target_str = "opencl"
# target_str = "opencl -device=adreno"
target = tvm.target.Target(target_str, host="llvm -mtriple=aarch64-linux-android")
input_name = "input"
filter_name = "weight"
input_shape=(1, 25, 25, 64)
filter_shape=(3, 3, 64, 96)
filter = np.random.rand(*filter_shape).astype(dtype)
input = tvm.relay.var("input", shape=input_shape, dtype=dtype)
weight = tvm.relay.var("weight", shape=filter_shape, dtype=dtype)
D = relay.nn.conv2d(input, weight, padding=(0, 0), data_layout="NHWC", kernel_layout="HWIO", out_dtype=dtype)
mod = relay.Function([input, weight], D)
params = {
"weight": tvm.nd.array(filter)
}
with tvm.transform.PassContext(opt_level=3):
graph, lib, params = relay.build_module.build(mod, target, params=params)
print(lib.imported_modules[0].get_source())
Here is the kernel source output from above python script
// Function: tvmgen_default_fused_nn_conv2d_kernel
#ifdef cl_khr_fp16
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
#elif defined(cl_amd_fp16)
#pragma OPENCL EXTENSION cl_amd_fp16 : enable
#else
#error "Half precision floating point not supported by OpenCL implementation on your device."
#endif
__kernel void tvmgen_default_fused_nn_conv2d_kernel(__global half* restrict conv2d_nhwc, __global half* restrict p0, __global half* restrict p1);
__kernel void tvmgen_default_fused_nn_conv2d_kernel(__global half* restrict conv2d_nhwc, __global half* restrict p0, __global half* restrict p1) {
half conv2d_nhwc_local[2];
__local half pad_temp_shared[24];
__local half p1_shared[256];
half pad_temp_shared_local[1];
half p1_shared_local[2];
for (int yy = 0; yy < 23; ++yy) {
vstore2(((half2)((half)0.000000e+00f, (half)0.000000e+00f)), 0, conv2d_nhwc_local + 0);
for (int rc_outer = 0; rc_outer < 4; ++rc_outer) {
for (int ry = 0; ry < 3; ++ry) {
for (int rx = 0; rx < 3; ++rx) {
barrier(CLK_LOCAL_MEM_FENCE);
pad_temp_shared[(((convert_int(get_local_id(1))) * 4) + (convert_int(get_local_id(0))))] = p0[(((((((yy * 1600) + (ry * 1600)) + ((convert_int(get_group_id(0))) * 64)) + (rx * 64)) + (rc_outer * 16)) + ((convert_int(get_local_id(1))) * 4)) + (convert_int(get_local_id(0))))];
for (int ax2_ax3_fused_outer_outer_outer = 0; ax2_ax3_fused_outer_outer_outer < 8; ++ax2_ax3_fused_outer_outer_outer) {
p1_shared[((((ax2_ax3_fused_outer_outer_outer * 32) + (((convert_int(get_local_id(1))) >> 1) * 16)) + (((convert_int(get_local_id(1))) & 1) * 4)) + (convert_int(get_local_id(0))))] = p1[((((((((ry * 18432) + (rx * 6144)) + (rc_outer * 1536)) + (ax2_ax3_fused_outer_outer_outer * 192)) + (((convert_int(get_local_id(1))) >> 1) * 96)) + ((convert_int(get_group_id(2))) * 8)) + (((convert_int(get_local_id(1))) & 1) * 4)) + (convert_int(get_local_id(0))))];
}
barrier(CLK_LOCAL_MEM_FENCE);
for (int rc_inner = 0; rc_inner < 16; ++rc_inner) {
if ((convert_int(get_local_id(1))) < 1) {
pad_temp_shared_local[0] = pad_temp_shared[(((convert_int(get_local_id(1))) * 24) + rc_inner)];
}
for (int ax3 = 0; ax3 < 2; ++ax3) {
p1_shared_local[ax3] = p1_shared[(((rc_inner * 16) + ((convert_int(get_local_id(0))) * 2)) + ax3)];
}
if ((convert_int(get_local_id(1))) < 1) {
vstore2((vload2(0, conv2d_nhwc_local + 0) + (((half2)(pad_temp_shared_local[0], pad_temp_shared_local[0])) * vload2(0, p1_shared_local + 0))), 0, conv2d_nhwc_local + 0);
}
}
}
}
}
for (int ff_outer_inner = 0; ff_outer_inner < 2; ++ff_outer_inner) {
if ((convert_int(get_local_id(1))) < 1) {
conv2d_nhwc[(((((((convert_int(get_local_id(1))) * 50784) + (yy * 2208)) + ((convert_int(get_group_id(0))) * 96)) + ((convert_int(get_group_id(2))) * 8)) + ((convert_int(get_local_id(0))) * 2)) + ff_outer_inner)] = conv2d_nhwc_local[ff_outer_inner];
}
}
}
}